Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix comp...Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.展开更多
Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure t...Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times.展开更多
In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium...In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium cement foamed sheet for improvement of electromagnetic industry,this paper uses the excellent microwave absorbing properties of ferrite and the modified sulfur oxide magnesium cement foam board,and discusses the microwave absorbing performance,aiming at improving the electromagnetic pollution in daily life.The effects of ferrite and silicon carbide doping on microwave absorption properties of modified magnesium oxysulfate cement were studied.At the same time,the wave absorbing properties of the corresponding samples were detected by bow method,and the causes of the corresponding phenomena were analyzed by scanning electron microscopy (SEM).The results show that the lowest reflectance of the material is-17.9 dB at 34.1 GHz and the average reflectance of the whole band is-15.9 dB under the target frequency band of 26.5-40 GHz.Under the action of external magnetic field,the absorbing particles are affected by magnetization force,magnetic dipole and resistance coupling,and play the absorbing effect in the cement base solidified completely in the electromagnetic field environment.The lowest reflectance is-17.3dB at 36.4GHz and the average reflectance is-14.3dB for the whole band.展开更多
Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing rati...Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing ratio (3%-9% in mass fraction) and thickness (1-7 mm) on the microwave absorption properties was systematically investigated in microwave frequency range of 2-18 GHz. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and scalar network analyzer (SNA) were used for characterizing microstructure and evaluating microwave absorption properties. Experimental results show the significant frequency (6-18 GHz) dependence of the complex relative permeability and permittivity. The reflection loss (RL) with different thickness and short-wire packing ratio reveals that the composite sample containing 7% exhibits better microwave absorption behavior with its minimum value of RL reaching-34 dB in thickness of 3 mm at 14 GHz. Therefore, it is significantly useful to develop microwire-dielectric materials with much wider absorption band for microwave absorption applications.展开更多
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki...High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.展开更多
The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of...The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.展开更多
Spatial and temporal variability of the absorption properties of colored dissolved organic matter (CDOM) in the Taiwan Strait was investigated in summer (July to August of 2006) and winter (from December 2006 to ...Spatial and temporal variability of the absorption properties of colored dissolved organic matter (CDOM) in the Taiwan Strait was investigated in summer (July to August of 2006) and winter (from December 2006 to January of 2007) seasons. The CDOM absorption coefficient at 280 nm (a 280 ) showed a decreasing trend from nearshore to offshore areas while the spectral slope coefficient parameter calculated between wavelengths 275–295 nm (S 275 295 ) showed an increase, indicative of decreasing aromaticity and molecular weight of the CDOM. The average a 280 in winter (1.47 ± 0.50 m ^-1 ) was significantly higher than in summer (1.10 ± 0.41 m ^-1 ), while the average S 275 295 in winter (26.7 ± 5.2 μm^- 1 ) was significantly lower than in summer (30.6 ± 5.5 μm^- 1 ), demonstrating clear seasonal variation in CDOM abundance and properties in the Taiwan Strait. A three-end- member conservative mixing model showed that local terrestrial CDOM inputs from several rivers along the western coast were small (〈5%). However, the distribution of CDOM in the Taiwan Strait is mainly controlled by water mass movement [i.e., the Zhe-min Coastal Current (ZCC) and the Kuroshio Branch Current (KBC) in winter and the South China Sea Water (SCSW) in summer]. Biological activity was also an important factor affecting the distribution of CDOM in the offshore region in summer months.展开更多
In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced conc...In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched. The results show that with the increase of fiber Volume fraction, the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced. When the volume content of steel fiber is 3%, the SE of concrete is above 50 dB and its frequency is above 1.8 GHz. Moreover, in the range of 8-18 GHz, steel fiber, carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete. The concrete with 0.5% carbon fiber can achieve the best absorbing property, the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%. The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency, and the minimum value of the reflectivity is below -10 dB. The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.展开更多
The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure compositi...The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close.展开更多
FeSiAl magnetically soft alloy hollow microspheres(MSAHMs) were prepared by self-reactive quenching technology based on Fe + Si + AI + KNO_3 reactive systems, in order to obtain absorbents with light weight, low frequ...FeSiAl magnetically soft alloy hollow microspheres(MSAHMs) were prepared by self-reactive quenching technology based on Fe + Si + AI + KNO_3 reactive systems, in order to obtain absorbents with light weight, low frequency and high efficiency. Firstly, twice-balling adhesive precursor method was used to obtain FeSiAl magnetically soft alloy agglomerate powders. Then agglomerate powders with the mesh number of 150-240, 240-325 and 325-400 were sprayed through the flame field into the quenching water. At last, FeSiAl MSAHMs with coarse(average at 86.97 μm), medium(average at 52.16 μm) and fine particles(average at 31.80 μm) were got. Effect of particle size on the phases and microwave absorption properties in low frequency band was studied by XRD and vector network analyzer. The results show that,Fe_3 Si_(0.7)Al_(0.3) and Fe_3 Si_(0.5)Al_(0.5) appear in the phase components of FeSiAl MSAHMs,which is important to improve the microwave absorption properties in low frequency. In addition, the real part(ε′) and imaginary part(ε″) of complex permittivity, the real part(μ′) and imaginary part(μ″) of complex permeability of FeSiAl MSAHMs all present the trend of fine particles > medium particles > coarse particles. The microwave absorption properties in low frequency are improved with the increasing of particle size, and the absorption peak moves to lower frequency range. The properties of fine particles are the best. Their matching thickness of samples is at 5 mm, and the minimum reflectivity is-43 dB at this thickness. The absorption frequency band lower than-10 dB is 4.6-7.6 GHz with a bandwidth of 3 GHz.展开更多
The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) ...The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.展开更多
This experiment was conducted to determine the influences of adding organic selenium (Se) on growth properties, Se absorption and utilization, immunity and antioxidant activity in diets of Duroc weaning piglets. This ...This experiment was conducted to determine the influences of adding organic selenium (Se) on growth properties, Se absorption and utilization, immunity and antioxidant activity in diets of Duroc weaning piglets. This study was performed on 36 (average weight 7.6 kg) weaning piglets. The weaning piglets were randomly allocated to 1 of 4 homogeneous treatments (A, control treatment, no added Se;B, Sodium selenite, 0.3 mg Se/kg feed;C, yeast Se, 0.3 mg Se/kg;D, DL-methionine Se 0.3 mg Se/kg). Every treatment had 3 replicates, every replicate had 3 piglets. The experiment lasted for 35 d, with the first 7 d for adaptation. Feed intake, residual and contaminated feed were recorded every day. Every piglet weight was weighted respectively at beginning and end of experiment. Daily intake, gain weight and feed conversion rates of every replicate were calculated finally. Se concentrations of serum, blood antioxidant and immunity index were analyzed in the 36th d of experiment. The results showed average daily gain of treatment C was significant higher (P 0.05) and D had higher trend than that of treatment A and B (P = 0.06) respectively. And feed and gain ratio of C and D had trends to lower than them of A and B (P = 0.14). However, all the intake of every week and whole period had no significant differences among treatments (P > 0.05). At same time, except for the Immunoglobulin M of treatment D and C was higher than that of treatment A and B significantly (P < 0.05), all the other Se contents of serum, immunity indexes, blood cell parameters and enzymatic activities had no significant differences among treatments (P > 0.05). But they took on some obvious trends. For example, the Se contents and glutathione peroxidase activities increased successively in order of treatment A, B, C and D;the blood urea nitrogen and total bilirubin of treatment A had higher trend than that of other treatments (P = 0.06). All in all, adding to organic Se in basal diets could improve the animal’s healthy levels, growth properties and Se utilization to some extent. Relatively speaking, the DL-methionine Se had more advantages compared to yeast Se.展开更多
Superfine powders of nano-lithium ferrite doped with different kinds and amount of rare earth element were prepared by sol-gel method. Their photograph was taken by transmission electron microscopy. From it, we can se...Superfine powders of nano-lithium ferrite doped with different kinds and amount of rare earth element were prepared by sol-gel method. Their photograph was taken by transmission electron microscopy. From it, we can see most of particles are less than 100 nm and average diameter of superfine powders is 50 nm. Then their microwave absorption properties are measured by power ratio method. The result indicates that microwave absorption properties of nano-lithium ferrite doped with rare earth element change obviously. Different kinds and amount of rare earth element make different influences. Magnetic hysteresis loop is surveyed by vibrating sample magnetometer. We find that there are some relationships between magnetism and microwave absorption properties.展开更多
As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing t...As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress.展开更多
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ...Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.展开更多
Objective: To determine the in vitro and in vivo absorption properties of active ingredients of the Chinese medicine, baicalein, to enrich mechanistic understanding of oral drug absorption.Methods: The Biopharmaceutic...Objective: To determine the in vitro and in vivo absorption properties of active ingredients of the Chinese medicine, baicalein, to enrich mechanistic understanding of oral drug absorption.Methods: The Biopharmaceutic Classification System(BCS) category was determined using equilibrium solubility, intrinsic dissolution rate, and intestinal permeability to evaluate intestinal absorption mechanisms of baicalein in rats in vitro. Physiologically based pharmacokinetic(PBPK) model commercial software GastroPlus~(TM) was used to predict oral absorption of baicalein in vivo.Results: Based on equilibrium solubility, intrinsic dissolution rate, and permeability values of main absorptive segments in the duodenum, jejunum, and ileum, baicalein was classified as a drug with low solubility and high permeability. Intestinal perfusion with venous sampling(IPVS) revealed that baicalein was extensively metabolized in the body, which corresponded to the low bioavailability predicted by the PBPK model. Further, the PBPK model predicted the key indicators of BCS, leading to reclassification as BCS-II. Predicted values of peak plasma concentration of the drug(C_(max)) and area under the curve(AUC)fell within two times of the error of the measured results, highlighting the superior prediction of absorption of baicalein in rats, beagles, and humans. The PBPK model supported in vitro and in vivo evidence and provided excellent prediction for this BCS class II drug.Conclusion: BCS and PBPK are complementary methods that enable comprehensive research of BCS parameters, intestinal absorption rate, metabolism, prediction of human absorption fraction and bioavailability, simulation of PK, and drug absorption in various intestinal segments across species. This combined approach may facilitate a more comprehensive and accurate analysis of the absorption characteristics of active ingredients of Chinese medicine from in vitro and in vivo perspectives.展开更多
With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental ...With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental analysis of the desorption quantity of CO2, desorption rate, CO2 loading and the absorption rate. The experimental results showed that, in experimental conditions, The desorption rate decreased gradually with increasing ammonia concentrations. The desorption rate increased 12%, 17%, 19% and 28.8% when 1 mol/L of ammonia solution is added in 0.1 mol/L, 0.3 mol/L, 0.5 mol/L and 1 mol/L of sodium bicarbonate. The higher concentration of ammonium bicarbonate solution which was added sodium bicarbonate,the more observably the effect of CO2 desorption was promoted. The absorption rate had dropped when absorption process added 0.3 mol/L sodium bicarbonate, the CO2 loading was a little change.展开更多
The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is on...The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is one of the draw- backs of natural fibers. Hybrid filler-polypropylene composites are subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing 30 phr and 40 phr fiber weight were prepared by melt blending process. Water absorption tests were conducted by immersion specimens in distilled water at room temperature for different time durations (24, 48, 72, 96, 120, 144, 168, 192 hours). The tensile, flexural and impact properties were investigated before and after water absorption. The percentage of moisture uptake increased as the increasing order of the filler loading due to the high cellulose content. The phase morphology of wood flour/wheat husk polypropylene hybrid composites were investigated by SEM, the dynamic mechanical properties of the composite are analyzed by DMA & wheat, wood filler interaction are analyzed by FT-IR.展开更多
The effects of heat treatment on the dynamic compressive properties and energy absorption characteristics of open cell aluminum alloy foams (Al-Mg-Si alloy foam and Al-Cu-Mg alloy foam) produced by infiltrating proces...The effects of heat treatment on the dynamic compressive properties and energy absorption characteristics of open cell aluminum alloy foams (Al-Mg-Si alloy foam and Al-Cu-Mg alloy foam) produced by infiltrating process were studied. Two kinds of heat treatment were exploited: age-hardening and solution heat treating plus age-hardening (T6). The split Hopkinson pressure bar (SHPB) was used for high strain rate compression test. The results show that both age-hardened and T6-strengthened foams exhibit improved compression strength and shortened plateau region compared with that of foams in as-fabricated state under high strain rate compression, and the energy absorption capacity is also influenced significantly by heat treatment. It is worthy to note that omitting the solution treating can also improve the strength and energy absorbed much.展开更多
Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CN...Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CNTs, nanophase cobalt and nanophase zinc oxide, whose main microwave absorption mechanisms are based on resistance loss, magnetic loss and dielectric loss, we fabricate CNT/Co and CNT/ZnO heterostructure nanocom- posites, respectively. By using the CNTs, CNT/Co nanocomposites and CNT/ZnO nanocomposites as nanofillers, composites with polyester as matrix are prepared by in situ polymerization, and their microwave absorption per- formance is studied. It is indicated that the synergetic effects of the physic properties of different components in nano-heterostructures result in greatly enhanced microwave absorption performance in a wide frequency range. The absorption peak is increased, the absorption bandwidth is broadened, and the maximum peak shifts to a lower frequency.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51702011 and 51572018)the Fundamental Research Funds for the Central Universities of China (No.FRF-TP-20-006A3)the Scientific Research Project of Hunan Province Department of Education,China (No.20B323)。
文摘Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.
基金Supported by National Natural Science Foundation of China(Grant No.51805032).
文摘Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times.
基金Funded by National Defense Basic Research Program Project。
文摘In order to better solve the problem of electromagnetic pollution in the civil building cement,to improve the absorption capacity of magnesium oxysulfide cement based materials,and to better use sulfur oxide magnesium cement foamed sheet for improvement of electromagnetic industry,this paper uses the excellent microwave absorbing properties of ferrite and the modified sulfur oxide magnesium cement foam board,and discusses the microwave absorbing performance,aiming at improving the electromagnetic pollution in daily life.The effects of ferrite and silicon carbide doping on microwave absorption properties of modified magnesium oxysulfate cement were studied.At the same time,the wave absorbing properties of the corresponding samples were detected by bow method,and the causes of the corresponding phenomena were analyzed by scanning electron microscopy (SEM).The results show that the lowest reflectance of the material is-17.9 dB at 34.1 GHz and the average reflectance of the whole band is-15.9 dB under the target frequency band of 26.5-40 GHz.Under the action of external magnetic field,the absorbing particles are affected by magnetization force,magnetic dipole and resistance coupling,and play the absorbing effect in the cement base solidified completely in the electromagnetic field environment.The lowest reflectance is-17.3dB at 36.4GHz and the average reflectance is-14.3dB for the whole band.
基金Project(51371067)supported by the National Natural Science Foundation of China
文摘Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing ratio (3%-9% in mass fraction) and thickness (1-7 mm) on the microwave absorption properties was systematically investigated in microwave frequency range of 2-18 GHz. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and scalar network analyzer (SNA) were used for characterizing microstructure and evaluating microwave absorption properties. Experimental results show the significant frequency (6-18 GHz) dependence of the complex relative permeability and permittivity. The reflection loss (RL) with different thickness and short-wire packing ratio reveals that the composite sample containing 7% exhibits better microwave absorption behavior with its minimum value of RL reaching-34 dB in thickness of 3 mm at 14 GHz. Therefore, it is significantly useful to develop microwire-dielectric materials with much wider absorption band for microwave absorption applications.
基金This work was financially supported by the Chongqing Special Key Project of Technology Innovation and Applica-tion Development,China(No.cstc2019jscx-dxwtB0029)the National Natural Science Foundation of China(Nos.51871143 and U2102212)+1 种基金the Science and Technology Committee of Shanghai,China(No.19010500400)the Shanghai Rising-Star Program(No.21QA1403200).
文摘High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.
基金Projects(50874087,50978212) supported by the National Natural Science Foundation of China
文摘The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.
基金Scientific Research Foundation of Third Institute of Oceanography, State Oceanic Administration under contract No. TIO 2009007the National Natural Science Foundation of China under contract No. 41276064+3 种基金Fujian Provincial Surveys of Marine Chemistry in Coastal Waters and Harbours under contract No. FJ908-04-07River Basin-Estuary Ecological Security Assessment and Management Strategy under contract No. 200805064the National 908 Surveys of Marine Chemistry in Coastal Waters under contract No. 908-ZC-I-03the Fujian Provincial 908 Project under contract No. FJ-01-01-HS(chemistry)
文摘Spatial and temporal variability of the absorption properties of colored dissolved organic matter (CDOM) in the Taiwan Strait was investigated in summer (July to August of 2006) and winter (from December 2006 to January of 2007) seasons. The CDOM absorption coefficient at 280 nm (a 280 ) showed a decreasing trend from nearshore to offshore areas while the spectral slope coefficient parameter calculated between wavelengths 275–295 nm (S 275 295 ) showed an increase, indicative of decreasing aromaticity and molecular weight of the CDOM. The average a 280 in winter (1.47 ± 0.50 m ^-1 ) was significantly higher than in summer (1.10 ± 0.41 m ^-1 ), while the average S 275 295 in winter (26.7 ± 5.2 μm^- 1 ) was significantly lower than in summer (30.6 ± 5.5 μm^- 1 ), demonstrating clear seasonal variation in CDOM abundance and properties in the Taiwan Strait. A three-end- member conservative mixing model showed that local terrestrial CDOM inputs from several rivers along the western coast were small (〈5%). However, the distribution of CDOM in the Taiwan Strait is mainly controlled by water mass movement [i.e., the Zhe-min Coastal Current (ZCC) and the Kuroshio Branch Current (KBC) in winter and the South China Sea Water (SCSW) in summer]. Biological activity was also an important factor affecting the distribution of CDOM in the offshore region in summer months.
基金Chinese Government for Scientific Researches (No. A1420060186)Doctoral Fundation of University of Jinan(No. XBS1026)
文摘In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched. The results show that with the increase of fiber Volume fraction, the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced. When the volume content of steel fiber is 3%, the SE of concrete is above 50 dB and its frequency is above 1.8 GHz. Moreover, in the range of 8-18 GHz, steel fiber, carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete. The concrete with 0.5% carbon fiber can achieve the best absorbing property, the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%. The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency, and the minimum value of the reflectivity is below -10 dB. The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.
文摘The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close.
基金financial support of National Natural Science Fund of China(No. 51172282)Hebei Natural Science Fund of China (No. E2015506011)
文摘FeSiAl magnetically soft alloy hollow microspheres(MSAHMs) were prepared by self-reactive quenching technology based on Fe + Si + AI + KNO_3 reactive systems, in order to obtain absorbents with light weight, low frequency and high efficiency. Firstly, twice-balling adhesive precursor method was used to obtain FeSiAl magnetically soft alloy agglomerate powders. Then agglomerate powders with the mesh number of 150-240, 240-325 and 325-400 were sprayed through the flame field into the quenching water. At last, FeSiAl MSAHMs with coarse(average at 86.97 μm), medium(average at 52.16 μm) and fine particles(average at 31.80 μm) were got. Effect of particle size on the phases and microwave absorption properties in low frequency band was studied by XRD and vector network analyzer. The results show that,Fe_3 Si_(0.7)Al_(0.3) and Fe_3 Si_(0.5)Al_(0.5) appear in the phase components of FeSiAl MSAHMs,which is important to improve the microwave absorption properties in low frequency. In addition, the real part(ε′) and imaginary part(ε″) of complex permittivity, the real part(μ′) and imaginary part(μ″) of complex permeability of FeSiAl MSAHMs all present the trend of fine particles > medium particles > coarse particles. The microwave absorption properties in low frequency are improved with the increasing of particle size, and the absorption peak moves to lower frequency range. The properties of fine particles are the best. Their matching thickness of samples is at 5 mm, and the minimum reflectivity is-43 dB at this thickness. The absorption frequency band lower than-10 dB is 4.6-7.6 GHz with a bandwidth of 3 GHz.
基金supported by the National Natural Science Foundation of China (No. 60561001)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (No. 200408020105)+1 种基金the Program for New Century Excellent Talents in Universities (No. NCET-05-0272)College Science and Technology Re-search Project of Inner Mongolia Autonomous Region, China (No. NJ04094)
文摘The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.
文摘This experiment was conducted to determine the influences of adding organic selenium (Se) on growth properties, Se absorption and utilization, immunity and antioxidant activity in diets of Duroc weaning piglets. This study was performed on 36 (average weight 7.6 kg) weaning piglets. The weaning piglets were randomly allocated to 1 of 4 homogeneous treatments (A, control treatment, no added Se;B, Sodium selenite, 0.3 mg Se/kg feed;C, yeast Se, 0.3 mg Se/kg;D, DL-methionine Se 0.3 mg Se/kg). Every treatment had 3 replicates, every replicate had 3 piglets. The experiment lasted for 35 d, with the first 7 d for adaptation. Feed intake, residual and contaminated feed were recorded every day. Every piglet weight was weighted respectively at beginning and end of experiment. Daily intake, gain weight and feed conversion rates of every replicate were calculated finally. Se concentrations of serum, blood antioxidant and immunity index were analyzed in the 36th d of experiment. The results showed average daily gain of treatment C was significant higher (P 0.05) and D had higher trend than that of treatment A and B (P = 0.06) respectively. And feed and gain ratio of C and D had trends to lower than them of A and B (P = 0.14). However, all the intake of every week and whole period had no significant differences among treatments (P > 0.05). At same time, except for the Immunoglobulin M of treatment D and C was higher than that of treatment A and B significantly (P < 0.05), all the other Se contents of serum, immunity indexes, blood cell parameters and enzymatic activities had no significant differences among treatments (P > 0.05). But they took on some obvious trends. For example, the Se contents and glutathione peroxidase activities increased successively in order of treatment A, B, C and D;the blood urea nitrogen and total bilirubin of treatment A had higher trend than that of other treatments (P = 0.06). All in all, adding to organic Se in basal diets could improve the animal’s healthy levels, growth properties and Se utilization to some extent. Relatively speaking, the DL-methionine Se had more advantages compared to yeast Se.
文摘Superfine powders of nano-lithium ferrite doped with different kinds and amount of rare earth element were prepared by sol-gel method. Their photograph was taken by transmission electron microscopy. From it, we can see most of particles are less than 100 nm and average diameter of superfine powders is 50 nm. Then their microwave absorption properties are measured by power ratio method. The result indicates that microwave absorption properties of nano-lithium ferrite doped with rare earth element change obviously. Different kinds and amount of rare earth element make different influences. Magnetic hysteresis loop is surveyed by vibrating sample magnetometer. We find that there are some relationships between magnetism and microwave absorption properties.
文摘As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress.
文摘Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.
基金supported by the National Natural Science Foundation of China (81473362)。
文摘Objective: To determine the in vitro and in vivo absorption properties of active ingredients of the Chinese medicine, baicalein, to enrich mechanistic understanding of oral drug absorption.Methods: The Biopharmaceutic Classification System(BCS) category was determined using equilibrium solubility, intrinsic dissolution rate, and intestinal permeability to evaluate intestinal absorption mechanisms of baicalein in rats in vitro. Physiologically based pharmacokinetic(PBPK) model commercial software GastroPlus~(TM) was used to predict oral absorption of baicalein in vivo.Results: Based on equilibrium solubility, intrinsic dissolution rate, and permeability values of main absorptive segments in the duodenum, jejunum, and ileum, baicalein was classified as a drug with low solubility and high permeability. Intestinal perfusion with venous sampling(IPVS) revealed that baicalein was extensively metabolized in the body, which corresponded to the low bioavailability predicted by the PBPK model. Further, the PBPK model predicted the key indicators of BCS, leading to reclassification as BCS-II. Predicted values of peak plasma concentration of the drug(C_(max)) and area under the curve(AUC)fell within two times of the error of the measured results, highlighting the superior prediction of absorption of baicalein in rats, beagles, and humans. The PBPK model supported in vitro and in vivo evidence and provided excellent prediction for this BCS class II drug.Conclusion: BCS and PBPK are complementary methods that enable comprehensive research of BCS parameters, intestinal absorption rate, metabolism, prediction of human absorption fraction and bioavailability, simulation of PK, and drug absorption in various intestinal segments across species. This combined approach may facilitate a more comprehensive and accurate analysis of the absorption characteristics of active ingredients of Chinese medicine from in vitro and in vivo perspectives.
文摘With aqueous ammonia in the process of CO2 absorption and desorption to join sodium bicarbonate, the influence of HCO3- on CO2 absorption and desorption from ammonia solution was investigated through the experimental analysis of the desorption quantity of CO2, desorption rate, CO2 loading and the absorption rate. The experimental results showed that, in experimental conditions, The desorption rate decreased gradually with increasing ammonia concentrations. The desorption rate increased 12%, 17%, 19% and 28.8% when 1 mol/L of ammonia solution is added in 0.1 mol/L, 0.3 mol/L, 0.5 mol/L and 1 mol/L of sodium bicarbonate. The higher concentration of ammonium bicarbonate solution which was added sodium bicarbonate,the more observably the effect of CO2 desorption was promoted. The absorption rate had dropped when absorption process added 0.3 mol/L sodium bicarbonate, the CO2 loading was a little change.
文摘The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is one of the draw- backs of natural fibers. Hybrid filler-polypropylene composites are subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing 30 phr and 40 phr fiber weight were prepared by melt blending process. Water absorption tests were conducted by immersion specimens in distilled water at room temperature for different time durations (24, 48, 72, 96, 120, 144, 168, 192 hours). The tensile, flexural and impact properties were investigated before and after water absorption. The percentage of moisture uptake increased as the increasing order of the filler loading due to the high cellulose content. The phase morphology of wood flour/wheat husk polypropylene hybrid composites were investigated by SEM, the dynamic mechanical properties of the composite are analyzed by DMA & wheat, wood filler interaction are analyzed by FT-IR.
基金Project(90205018) supported by the National Natural Science Foundation of China
文摘The effects of heat treatment on the dynamic compressive properties and energy absorption characteristics of open cell aluminum alloy foams (Al-Mg-Si alloy foam and Al-Cu-Mg alloy foam) produced by infiltrating process were studied. Two kinds of heat treatment were exploited: age-hardening and solution heat treating plus age-hardening (T6). The split Hopkinson pressure bar (SHPB) was used for high strain rate compression test. The results show that both age-hardened and T6-strengthened foams exhibit improved compression strength and shortened plateau region compared with that of foams in as-fabricated state under high strain rate compression, and the energy absorption capacity is also influenced significantly by heat treatment. It is worthy to note that omitting the solution treating can also improve the strength and energy absorbed much.
基金Supported by the National Natural Science Foundation of China under Grant No 10332020
文摘Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CNTs, nanophase cobalt and nanophase zinc oxide, whose main microwave absorption mechanisms are based on resistance loss, magnetic loss and dielectric loss, we fabricate CNT/Co and CNT/ZnO heterostructure nanocom- posites, respectively. By using the CNTs, CNT/Co nanocomposites and CNT/ZnO nanocomposites as nanofillers, composites with polyester as matrix are prepared by in situ polymerization, and their microwave absorption per- formance is studied. It is indicated that the synergetic effects of the physic properties of different components in nano-heterostructures result in greatly enhanced microwave absorption performance in a wide frequency range. The absorption peak is increased, the absorption bandwidth is broadened, and the maximum peak shifts to a lower frequency.