Using the axiomatic method, abstract concepts such as abstract mean, abstract convex function and abstract majorization are proposed. They are the generalizations of concepts of mean, convex function and majorization,...Using the axiomatic method, abstract concepts such as abstract mean, abstract convex function and abstract majorization are proposed. They are the generalizations of concepts of mean, convex function and majorization, respectively. Through the logical deduction, the fundamental theorems about abstract majorization inequalities are established as follows: for arbitrary abstract mean Σ and $ \Sigma ' $ and abstract ∑ ? $ \Sigma ' $ strict convex function f(x) on the interval I, if x i , y i ∈ I (i = 1, 2,..., n) satisfy that $ (x_1 ,x_2 , \ldots ,x_n ) \prec _n^\Sigma (y_1 ,y_2 , \ldots ,y_n ) $ then $ \Sigma ' $ {f(x 1), f(x 2),..., f(x n )} ? $ \Sigma ' $ {f(y 1), f(y 2),..., f(y n )}. This class of inequalities extends and generalizes the fundamental theorem of majorization inequalities. Moreover, concepts such as abstract vector mean are proposed, the fundamental theorems about abstract majorization inequalities are generalized to n-dimensional vector space. The fundamental theorem of majorization inequalities about the abstract vector mean are established as follows: for arbitrary symmetrical convex set $ \mathcal{S} \subset \mathbb{R}^n $ , and n-variable abstract symmetrical $ \overline \Sigma $ ? $ \Sigma ' $ strict convex function $ \phi (\bar x) $ on $ \mathcal{S} $ , if $ \bar x,\bar y \in \mathcal{S} $ , satisfy $ \bar x \prec _n^\Sigma \bar y $ , then $ \phi (\bar x) \geqslant \phi (\bar y) $ ; if vector group $ \bar x_i ,\bar y_i \in \mathcal{S}(i = 1,2, \ldots ,m) $ satisfy $ \{ \bar x_1 ,\bar x_2 , \ldots ,\bar x_m \} \prec _n^{\bar \Sigma } \{ \bar y_1 ,\bar y_2 , \ldots ,\bar y_m \} $ , then $ \Sigma '\{ \phi (\bar x_1 ),\phi (\bar x_2 ), \ldots ,\phi (\bar x_m )\} \geqslant \Sigma '\{ \phi (\bar y_1 ),\phi (\bar y_2 ), \ldots ,\phi (\bar y_m )\} $ .展开更多
通过提出抽象平均、抽象凸函数、抽象控制和抽象受控不等式的同构映射概念,建立了抽象凸函数同构映射的基本定理:设(■)_F和(■)_S为抽象平均,α(x)为严格单调(■)_(F-)-函数,β(x)为严格单调递增(■)_(S-)-函数,那么f(x)为抽象(■)_F→...通过提出抽象平均、抽象凸函数、抽象控制和抽象受控不等式的同构映射概念,建立了抽象凸函数同构映射的基本定理:设(■)_F和(■)_S为抽象平均,α(x)为严格单调(■)_(F-)-函数,β(x)为严格单调递增(■)_(S-)-函数,那么f(x)为抽象(■)_F→(■)_S严格上凸函数的充分必要条件是:f*(x)=β^(-1)o f oα(x)为抽象(■)_F~α→(■)_S~β严格上凸函数,这里(■)_F~α=α^(-1)o(■)oα,(■)_S~β=β^(-1)o(■)_S oβ.在抽象平均同构映射的基础上,获得了抽象受控不等式同构映射的基本定理:记a_i=α^(-1)(x_i),b_i=α^(-1)(yi)(i=1,2,…,n),则不等式(■)_S{f(x_1),f(x_2),…,f(x_n)}>(■)_S{f(y_1),f(y_2),…,f(y_n)}成立的充分必要条件是:不等式(■)_S~β{f~*(a_1),f~*(a_2),…,f~*(a_n)}>(■)_S~β{f~*(b_1),f~*(b_2),…,f~*(b_n)}成立.作为基本定理的简单应用,证明了算术受控不等式、几何受控不等式和调和受控不等式这三类不等式是同构的.简而言之,这三类受控不等式是等价的.展开更多
基金supported by the National Key Basic Research Project of China (Grant No. 2004CB318003)the Foundation of the Education Department of Sichuan Province of China (Grant No. 07ZA087)
文摘Using the axiomatic method, abstract concepts such as abstract mean, abstract convex function and abstract majorization are proposed. They are the generalizations of concepts of mean, convex function and majorization, respectively. Through the logical deduction, the fundamental theorems about abstract majorization inequalities are established as follows: for arbitrary abstract mean Σ and $ \Sigma ' $ and abstract ∑ ? $ \Sigma ' $ strict convex function f(x) on the interval I, if x i , y i ∈ I (i = 1, 2,..., n) satisfy that $ (x_1 ,x_2 , \ldots ,x_n ) \prec _n^\Sigma (y_1 ,y_2 , \ldots ,y_n ) $ then $ \Sigma ' $ {f(x 1), f(x 2),..., f(x n )} ? $ \Sigma ' $ {f(y 1), f(y 2),..., f(y n )}. This class of inequalities extends and generalizes the fundamental theorem of majorization inequalities. Moreover, concepts such as abstract vector mean are proposed, the fundamental theorems about abstract majorization inequalities are generalized to n-dimensional vector space. The fundamental theorem of majorization inequalities about the abstract vector mean are established as follows: for arbitrary symmetrical convex set $ \mathcal{S} \subset \mathbb{R}^n $ , and n-variable abstract symmetrical $ \overline \Sigma $ ? $ \Sigma ' $ strict convex function $ \phi (\bar x) $ on $ \mathcal{S} $ , if $ \bar x,\bar y \in \mathcal{S} $ , satisfy $ \bar x \prec _n^\Sigma \bar y $ , then $ \phi (\bar x) \geqslant \phi (\bar y) $ ; if vector group $ \bar x_i ,\bar y_i \in \mathcal{S}(i = 1,2, \ldots ,m) $ satisfy $ \{ \bar x_1 ,\bar x_2 , \ldots ,\bar x_m \} \prec _n^{\bar \Sigma } \{ \bar y_1 ,\bar y_2 , \ldots ,\bar y_m \} $ , then $ \Sigma '\{ \phi (\bar x_1 ),\phi (\bar x_2 ), \ldots ,\phi (\bar x_m )\} \geqslant \Sigma '\{ \phi (\bar y_1 ),\phi (\bar y_2 ), \ldots ,\phi (\bar y_m )\} $ .
文摘通过提出抽象平均、抽象凸函数、抽象控制和抽象受控不等式的同构映射概念,建立了抽象凸函数同构映射的基本定理:设(■)_F和(■)_S为抽象平均,α(x)为严格单调(■)_(F-)-函数,β(x)为严格单调递增(■)_(S-)-函数,那么f(x)为抽象(■)_F→(■)_S严格上凸函数的充分必要条件是:f*(x)=β^(-1)o f oα(x)为抽象(■)_F~α→(■)_S~β严格上凸函数,这里(■)_F~α=α^(-1)o(■)oα,(■)_S~β=β^(-1)o(■)_S oβ.在抽象平均同构映射的基础上,获得了抽象受控不等式同构映射的基本定理:记a_i=α^(-1)(x_i),b_i=α^(-1)(yi)(i=1,2,…,n),则不等式(■)_S{f(x_1),f(x_2),…,f(x_n)}>(■)_S{f(y_1),f(y_2),…,f(y_n)}成立的充分必要条件是:不等式(■)_S~β{f~*(a_1),f~*(a_2),…,f~*(a_n)}>(■)_S~β{f~*(b_1),f~*(b_2),…,f~*(b_n)}成立.作为基本定理的简单应用,证明了算术受控不等式、几何受控不等式和调和受控不等式这三类不等式是同构的.简而言之,这三类受控不等式是等价的.