Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,a...Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.展开更多
This paper presents the results of our recent studies on the upper mantle composition in the Qinling Belt and East China . It discusses the methods of estimating the upper mantle composition, its selected elements and...This paper presents the results of our recent studies on the upper mantle composition in the Qinling Belt and East China . It discusses the methods of estimating the upper mantle composition, its selected elements and its constitution characteristics .The results indicate that ore-forming elements on ore types and their distribution in this area are strongly controlled by the upper mantle heterogeneity .展开更多
Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007,...Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.展开更多
The continental crustobody of China is composed of three regional crustobodies, i. e., the Cathaysian crustobody, the West China crustobody and the South Tibet crustobody. This paper gives their mass models and elemen...The continental crustobody of China is composed of three regional crustobodies, i. e., the Cathaysian crustobody, the West China crustobody and the South Tibet crustobody. This paper gives their mass models and element abundance values and discusses their regional abundance characteristics from metallogenic elernents, heat source elements and lanthanide elements. The conclusion is that their geochemical backgrounds are quite different from each other.展开更多
China's continental crust (CCC)has an average thickness of 47km,with the uppercontinental crust (CUCC)being 31 km and the sedimentary layer(CSL)5 km in thickness.The CCC,CUCC and CSL measure 12.437×10^17,8.00...China's continental crust (CCC)has an average thickness of 47km,with the uppercontinental crust (CUCC)being 31 km and the sedimentary layer(CSL)5 km in thickness.The CCC,CUCC and CSL measure 12.437×10^17,8.005×10^17 and 1.146×10^17 metric tons in mass,respectively.The mass ratio of the upper continental crust to the lower one is 1.8:1.The element abundances were calculated for the CCC,CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types and some complementary trace element data.The total abundance of 13 major elements accounts for 99.6% of the CCC mass while the other minor elements only account for 0.4%.REE characteristics,the abundance ratios of element pairs and the amounts of ore-forming elements are also discussed in the present paper.展开更多
In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trac...In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trachyte series and adjacent mafic-ultramafic layered intrusions, as well as on the avail-able data for basalt, andesite, dacite and rhyolite series in southern Andes,Chile ,which have been well documented.It is demonstrated that the abundance constant (R) for a given trace element at dif-ferent stages of fractional crystallization of a parental magma is highly variable,which can be used as a criterion to divide fractional crystallization stages.展开更多
A primary magma not only represents the starting point of a fractional crystallization process,but also is the product of an equilibrium or fractional partial melting process in a mantle. Element abundance relation sh...A primary magma not only represents the starting point of a fractional crystallization process,but also is the product of an equilibrium or fractional partial melting process in a mantle. Element abundance relation ships in the primary magma obey both the law of power function for fractional crystallization and the law of fractional linear function for Nullibrium partial melting. Based on this double nature of the primary magma, the authors advanced a principle to restore the primary magma composition from that of an igneous rock series with petrogenesis of fractional crystalization and put forward an approach of estimating the element abundance of the primary magma, exemplified by the rare-earth elements in the Andes volcanic rock series.展开更多
The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China's Chang'E-2(CE-2) lunar orbiter carried a set of X-ray spectrometer(XR...The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China's Chang'E-2(CE-2) lunar orbiter carried a set of X-ray spectrometer(XRS) to investigate the elemental abundances of the lunar surface. During CE-2's life span around the Moon, the XRS experienced several events of solar flare. The X-ray solar monitor onboard recorded the spectra of solar X-rays at the same time. In this paper, we introduced the XRS instrument and data product. We analyzed the characteristics of the XRS data. Using the data obtained during an M solar flare event which had occurred on Feb. 16, 2011, we derived the elemental abundances of Mg, Al, Si, Ca and Fe of the lunar surface in the Oceanus Procellarum. Finally, we discussed the factors that influence the accuracy of the inversion.展开更多
All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn...All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.展开更多
Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the bas...Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.展开更多
This paper has investigated the ratios of closely related elements such as Mn,Cr,V,Ni,Co,Cu,Pb,Cd,Ba,Sr,La and Ce in the major soils of China,and the factors affecting them,and explored their use as indicators in soil...This paper has investigated the ratios of closely related elements such as Mn,Cr,V,Ni,Co,Cu,Pb,Cd,Ba,Sr,La and Ce in the major soils of China,and the factors affecting them,and explored their use as indicators in soil formation,material transport and environmental pollution.Results show that the effect of soil-forming processes on the ratios of closely related elements varied with different elements,and became greater in the sequence of Ce/La <V/Cr≈Ni/Co<Zn/Cu≈Zn/Pb<Zn/Cd<Mn/Cr<Ba/Sr.The magnitude of the variation in the ratios of closely related elements depended on the chemical properties of the elements themselves,on the one hand,and the parent material and climatic conditions on the other.The ratio of Ba/Sr showed a distinct zonality,decreasing gradually in the sequence:cool temperate zone acid soils>grassland soils>desert soils and increasing gradually from the semi-arid subhumid zone soils>the temperate zone neutral soils>the north subtropic zone soils>tropical and subtropical acid soils.展开更多
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi...Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
The Gaoshan gold-silver deposit, located between the Yuyao-Lishui Fault and Jiangshan- Shaoxing fault in Longquan Area, occurs in the Suichang-Longquan gold-silver polymetallic metallogenic belt. This study conducted ...The Gaoshan gold-silver deposit, located between the Yuyao-Lishui Fault and Jiangshan- Shaoxing fault in Longquan Area, occurs in the Suichang-Longquan gold-silver polymetallic metallogenic belt. This study conducted an investigation for ore-forming fluids using microthermometry, D-O isotope and trace element. The results show that two types of fluid inclusions involved into the formation of the deposit are pure liquid phase and gas-liquid phase aqueous inclusions. The homogenization temperature and salinity of major mineralization phase ranges from 156~C to 236~C (average 200~C) and 0.35% to 8.68% (NaCleqv) (average 3.68%), respectively, indicating that the ore-forming fluid is characteristic of low temperature and low salinity. The ore- forming pressure ranges between in 118.02 to 232.13"105 pa, and it is estabmiated that the ore- forming depth ranges from 0.39 to 0.77 km, indicating it is a hypabyssal deposit in genesis. The low rare earth elements content in pyrites, widely developed fluorite in late ore-forming stage and lack of chlorargyrite (AgCI), indicates that the ore-forming fluid is rich in F rather than CI. The ratios of Y/ Ho, Zr/Hf and Nb/Ta of between different samples have little difference, indicating that the later hydrothermal activities had no effects on the former hydrothermal fluid. The chondrite-normalized REE patterns of pyrites from country rocks and ore veins are basically identical, with the characteristics of light REE enrichment and negative Eu anomalies, implying that the ore-forming fluid was oxidative and derived partly from the country rocks. The JD and jlSo of fluid inclusions in quartz formed during the main metallogenic stage range from -105%o to -69 %0 and -6.01%o to -3.81%o, respectively. The D-O isotopic diagram shows that the metallogenic fluid is characterized by the mixing of formation water and meteoric water, without involvement of magmatic water. The geological and geochemical characteristics of the Gaoshan gold-silver deposit are similar to those of continental volcanic hydrothermal deposit, and could be assigned to the continental volcanic hydrothermal gold-silver deposit type.展开更多
It is well known that the Huanghe (Yellow) River ranks first in the world in sediment discharge and that the Changjiang (Yangtze) River is the third in total length and water discharge. The two rivers continuously bri...It is well known that the Huanghe (Yellow) River ranks first in the world in sediment discharge and that the Changjiang (Yangtze) River is the third in total length and water discharge. The two rivers continuously bring large amount of suspended loads to the seas, about 500×10~6 t (the Changjiang River) and 100×10~6 t (the Huanghe River) per year, which make a great contribution to the sedimentation in the shallow water areas of the展开更多
A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust min...A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust mineral resources. Sub-samples from top to bottom of a 10-cm thick sample from the NW Pacific Magellan seamount were taken at 5 mm intervals. The concentration profiles of ore-forming and rare earth elements show that obvious differences exist between young unphosphatized crusts and old phosphatized crusts. In the old crusts Fe, Mn, Si, Al, Zn, Mg, Co, Ni and Cu elements are depleted and Ca, P, Sr, Ba and Pb elements are enriched. The order of depletion is Co > Ni > Mg > Al > Mn > Si> Cu > Zn > Fe, while the order of enrichment is P > Ca > Ba > Pb > Sr. The phosphate mineral controls the concentration variation of the ore-forming elements in crusts and causes loss of the main ore-forming elements such as Co and Ni. The phosphatization also affects the abundance of REEs in the crusts. REEs are more abundant and the content of Ce in old crusts is higher than that in young crusts, however, the pattern of REEs and their fractionation characteristics in new and old crusts are not fundamentally changed. A Y-positive anomaly in old crusts has no relationship to the phosphatization.展开更多
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
文摘Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.
文摘This paper presents the results of our recent studies on the upper mantle composition in the Qinling Belt and East China . It discusses the methods of estimating the upper mantle composition, its selected elements and its constitution characteristics .The results indicate that ore-forming elements on ore types and their distribution in this area are strongly controlled by the upper mantle heterogeneity .
基金supported by the National High Technology Research and Development Program of China(Nos2008AA12A212 and 2010AA122202)the National Natural Science Foundation of China(Nos41040031 and 40904024)
文摘Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.
文摘The continental crustobody of China is composed of three regional crustobodies, i. e., the Cathaysian crustobody, the West China crustobody and the South Tibet crustobody. This paper gives their mass models and element abundance values and discusses their regional abundance characteristics from metallogenic elernents, heat source elements and lanthanide elements. The conclusion is that their geochemical backgrounds are quite different from each other.
文摘China's continental crust (CCC)has an average thickness of 47km,with the uppercontinental crust (CUCC)being 31 km and the sedimentary layer(CSL)5 km in thickness.The CCC,CUCC and CSL measure 12.437×10^17,8.005×10^17 and 1.146×10^17 metric tons in mass,respectively.The mass ratio of the upper continental crust to the lower one is 1.8:1.The element abundances were calculated for the CCC,CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types and some complementary trace element data.The total abundance of 13 major elements accounts for 99.6% of the CCC mass while the other minor elements only account for 0.4%.REE characteristics,the abundance ratios of element pairs and the amounts of ore-forming elements are also discussed in the present paper.
文摘In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trachyte series and adjacent mafic-ultramafic layered intrusions, as well as on the avail-able data for basalt, andesite, dacite and rhyolite series in southern Andes,Chile ,which have been well documented.It is demonstrated that the abundance constant (R) for a given trace element at dif-ferent stages of fractional crystallization of a parental magma is highly variable,which can be used as a criterion to divide fractional crystallization stages.
文摘A primary magma not only represents the starting point of a fractional crystallization process,but also is the product of an equilibrium or fractional partial melting process in a mantle. Element abundance relation ships in the primary magma obey both the law of power function for fractional crystallization and the law of fractional linear function for Nullibrium partial melting. Based on this double nature of the primary magma, the authors advanced a principle to restore the primary magma composition from that of an igneous rock series with petrogenesis of fractional crystalization and put forward an approach of estimating the element abundance of the primary magma, exemplified by the rare-earth elements in the Andes volcanic rock series.
基金financially supported jointly by the NSFC program(40904051)CAS Program(XDA04071900)Science and Technology Development Fund in Macao SAR(Grant Number:048/2012/A2)
文摘The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China's Chang'E-2(CE-2) lunar orbiter carried a set of X-ray spectrometer(XRS) to investigate the elemental abundances of the lunar surface. During CE-2's life span around the Moon, the XRS experienced several events of solar flare. The X-ray solar monitor onboard recorded the spectra of solar X-rays at the same time. In this paper, we introduced the XRS instrument and data product. We analyzed the characteristics of the XRS data. Using the data obtained during an M solar flare event which had occurred on Feb. 16, 2011, we derived the elemental abundances of Mg, Al, Si, Ca and Fe of the lunar surface in the Oceanus Procellarum. Finally, we discussed the factors that influence the accuracy of the inversion.
基金the Key 0rientation Research Project of the Chinese Academy of Sciences (KZCX2-YW- 111);the National Natural Science Foundation of China (Grant Nos. 40172037 and 40072036) for its financial support.
文摘All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.
基金The National Natural Science Foundation of China under contract Nos 41376057,41306047,41676056the Spanish project SUBVENT under contract No.CGL2012-39524-C02
文摘Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.
文摘This paper has investigated the ratios of closely related elements such as Mn,Cr,V,Ni,Co,Cu,Pb,Cd,Ba,Sr,La and Ce in the major soils of China,and the factors affecting them,and explored their use as indicators in soil formation,material transport and environmental pollution.Results show that the effect of soil-forming processes on the ratios of closely related elements varied with different elements,and became greater in the sequence of Ce/La <V/Cr≈Ni/Co<Zn/Cu≈Zn/Pb<Zn/Cd<Mn/Cr<Ba/Sr.The magnitude of the variation in the ratios of closely related elements depended on the chemical properties of the elements themselves,on the one hand,and the parent material and climatic conditions on the other.The ratio of Ba/Sr showed a distinct zonality,decreasing gradually in the sequence:cool temperate zone acid soils>grassland soils>desert soils and increasing gradually from the semi-arid subhumid zone soils>the temperate zone neutral soils>the north subtropic zone soils>tropical and subtropical acid soils.
基金support from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals
文摘Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金funded by “Preliminary Study On the Metallogenic Conditions and Prospecting Direction of Gold-Silver Deposits,Suichang-Longquan Area,Zhejiang(No.:YK1401)”“Summary and Research Project of the Mineral Geology of China by Mineral Type(Group)(No.:12120114039601)”+1 种基金“Research Project of the Metallogenic Regularity of the National Important Mineral Areas(No.:1212011121037)”“Comprehensive Research Project of China’s Mineral Geology and Regional Metallogenic Regularity(China’s Mineral Geology)(No.:1212011220369)”
文摘The Gaoshan gold-silver deposit, located between the Yuyao-Lishui Fault and Jiangshan- Shaoxing fault in Longquan Area, occurs in the Suichang-Longquan gold-silver polymetallic metallogenic belt. This study conducted an investigation for ore-forming fluids using microthermometry, D-O isotope and trace element. The results show that two types of fluid inclusions involved into the formation of the deposit are pure liquid phase and gas-liquid phase aqueous inclusions. The homogenization temperature and salinity of major mineralization phase ranges from 156~C to 236~C (average 200~C) and 0.35% to 8.68% (NaCleqv) (average 3.68%), respectively, indicating that the ore-forming fluid is characteristic of low temperature and low salinity. The ore- forming pressure ranges between in 118.02 to 232.13"105 pa, and it is estabmiated that the ore- forming depth ranges from 0.39 to 0.77 km, indicating it is a hypabyssal deposit in genesis. The low rare earth elements content in pyrites, widely developed fluorite in late ore-forming stage and lack of chlorargyrite (AgCI), indicates that the ore-forming fluid is rich in F rather than CI. The ratios of Y/ Ho, Zr/Hf and Nb/Ta of between different samples have little difference, indicating that the later hydrothermal activities had no effects on the former hydrothermal fluid. The chondrite-normalized REE patterns of pyrites from country rocks and ore veins are basically identical, with the characteristics of light REE enrichment and negative Eu anomalies, implying that the ore-forming fluid was oxidative and derived partly from the country rocks. The JD and jlSo of fluid inclusions in quartz formed during the main metallogenic stage range from -105%o to -69 %0 and -6.01%o to -3.81%o, respectively. The D-O isotopic diagram shows that the metallogenic fluid is characterized by the mixing of formation water and meteoric water, without involvement of magmatic water. The geological and geochemical characteristics of the Gaoshan gold-silver deposit are similar to those of continental volcanic hydrothermal deposit, and could be assigned to the continental volcanic hydrothermal gold-silver deposit type.
文摘It is well known that the Huanghe (Yellow) River ranks first in the world in sediment discharge and that the Changjiang (Yangtze) River is the third in total length and water discharge. The two rivers continuously bring large amount of suspended loads to the seas, about 500×10~6 t (the Changjiang River) and 100×10~6 t (the Huanghe River) per year, which make a great contribution to the sedimentation in the shallow water areas of the
基金supported by grant DY95-08-05 from the China Ocean Mineral Resources R&D Associationthe National Natural Science Foundation of China(Grant 40373002).
文摘A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust mineral resources. Sub-samples from top to bottom of a 10-cm thick sample from the NW Pacific Magellan seamount were taken at 5 mm intervals. The concentration profiles of ore-forming and rare earth elements show that obvious differences exist between young unphosphatized crusts and old phosphatized crusts. In the old crusts Fe, Mn, Si, Al, Zn, Mg, Co, Ni and Cu elements are depleted and Ca, P, Sr, Ba and Pb elements are enriched. The order of depletion is Co > Ni > Mg > Al > Mn > Si> Cu > Zn > Fe, while the order of enrichment is P > Ca > Ba > Pb > Sr. The phosphate mineral controls the concentration variation of the ore-forming elements in crusts and causes loss of the main ore-forming elements such as Co and Ni. The phosphatization also affects the abundance of REEs in the crusts. REEs are more abundant and the content of Ce in old crusts is higher than that in young crusts, however, the pattern of REEs and their fractionation characteristics in new and old crusts are not fundamentally changed. A Y-positive anomaly in old crusts has no relationship to the phosphatization.