Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperatu...Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.展开更多
A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
To acquire a rational minimum cut-off time and the precision of lifetime prediction with respect to cut-off time for the accelerated aging test of LED lamps, fifth-order moving average error estimation is adopted in t...To acquire a rational minimum cut-off time and the precision of lifetime prediction with respect to cut-off time for the accelerated aging test of LED lamps, fifth-order moving average error estimation is adopted in this paper. Eighteen LED lamps from the same batch are selected for two accelerated aging tests, with 10 samples at 80 ℃ and eight samples at 85 ℃. First, the accelerated lifetime of each lamp is acquired by exponential fitting of the lumen maintenances of the lamp for a certain cut-offtime With the acquired lifetimes of all lamps, the two-parameter Weibull distribution of the failure probability is obtained, and the medium lifetime is calculated. Then, the precision of the medium lifetime prediction for different cut-off times is obtained by moving average error estimation. It is shown that there exists a minimum cut-off time for the accelerated aging test, which can be determined by the variation of the moving average error versus the cut-offtime. When the cut-off time is less than this value, the lifetime estimation is irrational. For a given cut-off time, the precision of lifetime prediction can be computed by average error evaluation, and the error of lifetime estimation decreases gradually as the cut-off time- increases. The minimum cut-off time and medium lifetime of LED lamps are both sensitive to thermal stress. The minimum cut-off time is 1104 h with the lifetime esti- mation error of 1.15% for the test at 80 ~C, and 936 h with the lifetime estimation error of 1.24% for the test at 85 ℃. With the lifetime estimation error of about 0.46%, the median lifetimes are 7310 h and 4598 h for the tests at 80 ℃ and 85℃, respectively.展开更多
基金Project(51578272)supported by the National Natural Science Foundation of China
文摘Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
基金supported by the National High-Tech R&D Program(863)of China(Nos.2015AA03A101 and 2013AA03A116)the Cui Can Project of Chinese Academy of Sciences(No.KZCC-EW-102)
文摘To acquire a rational minimum cut-off time and the precision of lifetime prediction with respect to cut-off time for the accelerated aging test of LED lamps, fifth-order moving average error estimation is adopted in this paper. Eighteen LED lamps from the same batch are selected for two accelerated aging tests, with 10 samples at 80 ℃ and eight samples at 85 ℃. First, the accelerated lifetime of each lamp is acquired by exponential fitting of the lumen maintenances of the lamp for a certain cut-offtime With the acquired lifetimes of all lamps, the two-parameter Weibull distribution of the failure probability is obtained, and the medium lifetime is calculated. Then, the precision of the medium lifetime prediction for different cut-off times is obtained by moving average error estimation. It is shown that there exists a minimum cut-off time for the accelerated aging test, which can be determined by the variation of the moving average error versus the cut-offtime. When the cut-off time is less than this value, the lifetime estimation is irrational. For a given cut-off time, the precision of lifetime prediction can be computed by average error evaluation, and the error of lifetime estimation decreases gradually as the cut-off time- increases. The minimum cut-off time and medium lifetime of LED lamps are both sensitive to thermal stress. The minimum cut-off time is 1104 h with the lifetime esti- mation error of 1.15% for the test at 80 ~C, and 936 h with the lifetime estimation error of 1.24% for the test at 85 ℃. With the lifetime estimation error of about 0.46%, the median lifetimes are 7310 h and 4598 h for the tests at 80 ℃ and 85℃, respectively.