Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framewo...Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.展开更多
Both mass and charge are needed to create a rotating Black Hole as has been investigated in great mathematical detail by the Reissner-Nordstrom metric and the Kerr-Newman metric. It is their application to astronomica...Both mass and charge are needed to create a rotating Black Hole as has been investigated in great mathematical detail by the Reissner-Nordstrom metric and the Kerr-Newman metric. It is their application to astronomical phenomena that they have stated difficulty with because astronomical objects have no net electric charge and that is what we are exploring. While the energy in the gravitational field of the mass of a Neutron Star alone cannot create a stationary Black Hole, together with the energy in the strong magnetic field created by a rotating Neutron Star a rotating Black Hole is formed. Black Holes are the portal to the next higher spatial dimension.展开更多
We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field ...We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field area and use the Gibbons–Werner approach to analyze the optical geometry of the accelerating charged AdS black hole in the non-magnetic plasma absence/presence of a non-magnetic medium.We also represent the graphical behavior of the light deflection angle w.r.t.the impact parameter.We also compute the light deflection angle using Keeton and Petters approximations under the impact of accelerating charged AdS black hole geometry.Furthermore,by using the ray-tracing approach,we determine the shadow in the nonmagnetic plasma presence and also demonstrate that graphical shadow has an impact on the gauge potential,non-magnetic plasma frequencies and charge.展开更多
We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to dece...We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.展开更多
In this study, we consider charged massive scalar fields around a Kerr-Sen spacetime. The radial and angular parts of the covariant Klein-Gordon equation are solved in terms of the confluent Heun function. From the ex...In this study, we consider charged massive scalar fields around a Kerr-Sen spacetime. The radial and angular parts of the covariant Klein-Gordon equation are solved in terms of the confluent Heun function. From the exact radial solution, we obtain the Hawking radiation spectrum and discuss its resonant frequencies. The massless case of the resonant frequencies is also examined.展开更多
In this work,we study the optical properties of a class of magnetically charged rotating black hole spacetimes.The black holes in question are assumed to be immersed in the quintessence field,and subsequently,the resu...In this work,we study the optical properties of a class of magnetically charged rotating black hole spacetimes.The black holes in question are assumed to be immersed in the quintessence field,and subsequently,the resulting black hole shadows are expected to be modified by the presence of dark energy.We investigate the photon region and the black hole shadow,especially their dependence on the relevant physical conditions,such as the quintessence state parameter,angular momentum,and magnetic charge magnitude.The photon regions depend sensitively on the horizon structure and possess intricate features.Moreover,from the viewpoint of a static observer,we explore a few observables,especially those associated with the distortion of the observed black hole shadows.展开更多
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No.2009A646
文摘Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.
文摘Both mass and charge are needed to create a rotating Black Hole as has been investigated in great mathematical detail by the Reissner-Nordstrom metric and the Kerr-Newman metric. It is their application to astronomical phenomena that they have stated difficulty with because astronomical objects have no net electric charge and that is what we are exploring. While the energy in the gravitational field of the mass of a Neutron Star alone cannot create a stationary Black Hole, together with the energy in the strong magnetic field created by a rotating Neutron Star a rotating Black Hole is formed. Black Holes are the portal to the next higher spatial dimension.
基金funded by the National Natural Science Foundation of China 11975145。
文摘We investigate the light deflection in the weak field approximation from the accelerating charged AdS black hole.For this purpose,we apply the Gauss–Bonnet theorem to calculate the light deflection in the weak field area and use the Gibbons–Werner approach to analyze the optical geometry of the accelerating charged AdS black hole in the non-magnetic plasma absence/presence of a non-magnetic medium.We also represent the graphical behavior of the light deflection angle w.r.t.the impact parameter.We also compute the light deflection angle using Keeton and Petters approximations under the impact of accelerating charged AdS black hole geometry.Furthermore,by using the ray-tracing approach,we determine the shadow in the nonmagnetic plasma presence and also demonstrate that graphical shadow has an impact on the gauge potential,non-magnetic plasma frequencies and charge.
文摘We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.
基金funded by the CNPq through the research Project(150640/2018-8)partially supported by the CNPq through the research Project(305835/2016-5)
文摘In this study, we consider charged massive scalar fields around a Kerr-Sen spacetime. The radial and angular parts of the covariant Klein-Gordon equation are solved in terms of the confluent Heun function. From the exact radial solution, we obtain the Hawking radiation spectrum and discuss its resonant frequencies. The massless case of the resonant frequencies is also examined.
基金Supported by the National Key R&D Program of China(2020YFC2201400)the Major Program of the National Natural Science Foundation of China(11690021)the National Natural Science Foundation of China(11505066)。
文摘In this work,we study the optical properties of a class of magnetically charged rotating black hole spacetimes.The black holes in question are assumed to be immersed in the quintessence field,and subsequently,the resulting black hole shadows are expected to be modified by the presence of dark energy.We investigate the photon region and the black hole shadow,especially their dependence on the relevant physical conditions,such as the quintessence state parameter,angular momentum,and magnetic charge magnitude.The photon regions depend sensitively on the horizon structure and possess intricate features.Moreover,from the viewpoint of a static observer,we explore a few observables,especially those associated with the distortion of the observed black hole shadows.