Background: Type 2 diabetes (T2D) remains a major global public health problem. This complex metabolic disorder can lead to various complications, including cardiovascular diseases (leading cause of death) in T2D. Amo...Background: Type 2 diabetes (T2D) remains a major global public health problem. This complex metabolic disorder can lead to various complications, including cardiovascular diseases (leading cause of death) in T2D. Among the biochemical markers associated with increased risk for cardiovascular disease, homocysteine is currently one of the predictive markers under evaluation. We investigate the link between hyperhomocysteinemia and diabetes complications in DT2 population in Brazzaville. Methodology: We conducted a cross-sectional analytical study, from October to December 2022. One hundred and fifty participants were included, 100 patients T2D (34 with complications, 33 with comorbidities, 33 without), and 50 patients controls. Sociodemographic and clinical characteristics were collected. Homocysteine (Hcy) serum levels were measured using Sandwich ELISA method. Results: Study population was composed of 50% males and 50% females with sex ratio of 1;mean age was 52.2 ± 10.8 years (30 - 83). The prevalence of hyperhomocysteinemia (HHcy) was 36% (20% moderate Hcy, 15% intermediate and 1% severe). Mean Hcy concentration was 31.9 μmol/l (18 - 103). Age, gender and physical inactivity were strongly correlated to Hcy (OR of 3.5;9.4 and 3 respectively). Multivariate analysis showed that HHcy was a risk accelerator for degenerative complications (stroke: OR = 6.2;ischemic heart disease: 4.9;neuropathy: 9.2;retinopathy: 4.5 and peripheral arterial disease: 4.9). Conclusion: These findings suggest that hyperhomocysteinemia can be considered as a predictive marker to be taken into account in targeting cardiovascular risk in Congolese subjects with T2D.展开更多
A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and r...A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and restrictive conditions, which can affect the performance of the algorithm. In this paper, the sufficient conditions for the asymptotic stability of an acceleration factor and inertia weight are deduced, the value of the inertia weight w is enhanced to ( 1, 1). Furthermore a new adaptive PSO algorithm - Acceleration Factor Harmonious PSO (AFHPSO) is proposed, and is proved to be a global search algorithm. AFHPSO is used for the parameter design of a fuzzy controller for a linear motor driving servo system. The performance of the nonlinear model for the servo system demonstrates the effectiveness of the optimized fuzzy controller and AFHPSO.展开更多
A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multi...A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.展开更多
Aiming at the complex corrosion degradation factors of reinforced concrete and clearing the deterioration mechanism in the constant stress state,a new type of constant current accelerated corrosion method in the salin...Aiming at the complex corrosion degradation factors of reinforced concrete and clearing the deterioration mechanism in the constant stress state,a new type of constant current accelerated corrosion method in the saline soil environment was developed.The three-dimensional paraffin isolation specimens and the three-dimensional penetration specimens were taken as the research objects,and the Cl−content and AC impedance Bode diagram were measured.The macro morphology and micro analysis were also used to evaluate the corrosion degradation laws of the two groups of specimens.A constant current three-factor system accelerated model was established for the current acceleration factor,chloride ion,and sulfate ion acceleration factor.The experimental results show that,in the constant stress test of the saline soil environmental conditions,the paraffin isolation layer can effectively isolate corrosive chloride ions,which is a brand-new research method of single factor variable control in the constant stress test.According to the basic corrosion data,the law of constant current acceleration test is summarized and divided into five corrosion degradation stages,and each stage has significant changes in the accelerated corrosion efficiency.The corrosion degradation of a constant stress test is the combined effect of constant current,positive and negative penetration of chloride ions and sulfate ions.展开更多
The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationsh...The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation展开更多
This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to d...This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.展开更多
There are some adjustable parameters which directly influence the performance and stability of Particle Swarm Optimization algorithm. In this paper, stabilities of PSO with constant parameters and time-varying paramet...There are some adjustable parameters which directly influence the performance and stability of Particle Swarm Optimization algorithm. In this paper, stabilities of PSO with constant parameters and time-varying parameters are analyzed without Lipschitz constraint. Necessary and sufficient stability conditions for acceleration factor P and inertia weight w are presented. Experiments on benchmark functions show the good performance of PSO satisfying the stability condition, even without Lipschitz constraint. And the inertia weight ω value is enhanced to (-1,1). Keywords Lipschitz constraint - Time-varying discrete system - Adaptive acceleration factor - Stability展开更多
In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found tha...In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found that the MDS not only quickly assesses the long-term reliability of solder joints within days,but can also mimic similar failure mechanisms in accelerated thermal cycling (ATC) tests. Based on the MDS and ATC reliability experiments,the acceleration factors (AF) were obtained for different reliability testing conditions.Furthermore,by using the creep constitutive relation and fatigue life model developed in part I,a numerical approach was established for the purpose of virtual life prediction of solder joints. The simulation results were found to be in good agreement with the test results from the MDS.As a result,a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of plastic BGA assembly.展开更多
Most manufacturers of solar modules guarantee the minimum performance of their modules for 20 to 25 years, and 30-year warranties have been introduced. The warranty typically guarantees that the modules will perform t...Most manufacturers of solar modules guarantee the minimum performance of their modules for 20 to 25 years, and 30-year warranties have been introduced. The warranty typically guarantees that the modules will perform to at least 90% capacity in the first 10 years and to at least 80% in the following 10 - 15 years. Early degradation resulting from design flaws, materials or processing issues is often apparent from startup to the first few years in service. Importantly, many module failures and performance losses are the result of gradual accumulated damage resulting from long-term outdoor exposure in harsh environments, referred. Many of these processes occur on relatively long time scales and the various degradation processes may be chemical, electrical, thermal or mechanical in nature. These are either initiated or accelerated by the combined stresses of the service environment, in particular solar radiation, temperature and moisture, and other stresses such as salt air, wind and snow. Accelerated Life Testing (ALT) test methodology is normally predicated on first being able to reproduce a specific degradation or failure mode without altering it (correlation);and, second, to produce that result in less than real-time acceleration. Degradation and failure may result when an applied stress exceeds material or product strength. This may be a one-time catastrophic event, the result of cyclic fatigue, or a gradual decline in requisite properties due to ageing mechanisms. Engineers in the manufacturing industries have used accelerated test (AT) experiments for many decades. The purpose of AT experiments is to acquire reliability information quickly. Test units of a material, component, subsystem or entire systems are subjected to higher-than-usual levels of one or more accelerating variables such as temperature or stress. Then the AT results are used to predict life of the units at use conditions. The extrapolation is typically justified (correctly or incorrectly) on the basis of physically motivated models or a combination of empirical model fitting with a sufficient amount of previous experience in testing similar units. The need to extrapolate in both time and the accelerating variables generally necessitates the use of fully parametric models. Statisticians have made important contributions in the development of appropriate stochastic models for AT data [typically a distribution for the response and regression relationships between the parameters of this distribution and the accelerating variable(s)], statistical methods for AT planning (choice of accelerating variable levels and allocation of available test units to those levels) and methods of estimation of suitable reliability metrics. This paper provides a review of many of the AT models that have been used successfully in this area.展开更多
As a reliability quantitative specification, parametric accelerated life testing was used to assess the reliability of a newly designed compressor of a commercial refrigerator subjected to repetitive stresses. A gener...As a reliability quantitative specification, parametric accelerated life testing was used to assess the reliability of a newly designed compressor of a commercial refrigerator subjected to repetitive stresses. A generalized life-stress failure model and new sample size equation with a new load concept were derived starting with the basic refrigeration cycle. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly evaluate the expected lifetime. The design of this testing should help an engineer uncover the design parameters affecting reliability during the design process of the compressor system. Consequently, it should help companies improve product reliability and avoid recalls due to the product failures in the field. A newly designed compressor in a commercial refrigerator was used as a test case.展开更多
The energy expression is presented for a failure mechanism, and it is appliedin an Accelerated Life Test (ALT) and an Accelerated Reliability Growth Test (ARGT). The conditionsof the common failure mechanism are obtai...The energy expression is presented for a failure mechanism, and it is appliedin an Accelerated Life Test (ALT) and an Accelerated Reliability Growth Test (ARGT). The conditionsof the common failure mechanism are obtained. The essential relationship between the conditions andthe Accelerated Factor (A_f) is proposed by using the energy model.展开更多
Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical load...Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical loads in the assembly were analyzed. The acceleration factor was derived from a generalized life-stress failure model with a new load concept. To reproduce the failure modes and mechanisms causing the fracture, new sample size equation was derived. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly reproduce early failure in field. Consequently, the failure modes and mechanisms found were identical with those of the failed sample. The design of this testing should help an engineer uncover the design parameters affecting the reliability of fractured helix upper dispenser in field. By eliminating the design flaws, gaps and weldline, the B1 life of the redesign of helix upper dispenser is now guaranteed to be over 10 years with a yearly failure rate of 0.1% that is the reliability quantitative test specifications (RQ).展开更多
Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT...Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.展开更多
Abstract Lognormal distribution is commonly used in engineering. It is also a life distribution of important research values. For long-life products follow this distribution, it is necessary to apply accelerated testi...Abstract Lognormal distribution is commonly used in engineering. It is also a life distribution of important research values. For long-life products follow this distribution, it is necessary to apply accelerated testing techniques to product demonstration. This paper describes the development of accelerated life testing sampling plans (ALSPs) for lognormal distribution under time-censoring conditions. ALSPs take both producer and consumer risks into account, and they can be designed to work whether acceleration factor (AF) is known or unknown. When AF is known, lift testing is assumed to be conducted under accelerated conditions with time-censoring. The producer and con- sumer risks are satisfied, and the size of test sample and the size of acceptance number arc opti- mized. Then sensitivity analyses are conducted. When AF is unknown, two or more predetermined levels of accelerated stress are used. The sample sizes and sample proportion allo- cated to each stress level are optimized. The acceptance constant that satisfies producer and consumer risk is obtdned by minimizing the generalized asymptotic variance of the test statistics. Finally, the properties of the two ALSPs (one for known-AF conditions and one for unknown AF conditions) are investigated to show that the proposed method is corrcct and usablc through numerical examples.展开更多
In several industrial fields like air transport,energy industry and military domain,maintenance actions are carried out during downtimes in order to maintain the reliability and availability of production system.In su...In several industrial fields like air transport,energy industry and military domain,maintenance actions are carried out during downtimes in order to maintain the reliability and availability of production system.In such a circumstance,selective maintenance strategy is considered the reliable solution for selecting the faulty components to achieve the next mission without stopping.In this paper,a novel multi-level decision making approach based on data mining techniques is investigated to determine an optimal selective maintenance scheduling.At the first-level,the age acceleration factor and its impact on the component nominal age are used to establish the local failures.This first decision making employed K-means clustering algorithm that exploited the historical maintenance actions.Based on the first-level intervention plan,the remaining-levels identify the stochastic dependence among components by relying upon Apriori association rules algorithm,which allows to discover of the failure occurrence order.In addition,at each decision making level,an optimization model combined to a set of exclusion rules are called to supply the optimal selective maintenance plan within a reasonable time,minimizing the total maintenance cost under a required reliability threshold.To illustrate the robustness of the proposed strategy,numerical examples and a FMS real study case have been solved.展开更多
Life data frequently arise in many reliability studies,such as accelerated life tests studies.This paper considers the part of life data where failure and censoring observations may exist.To develop statistical method...Life data frequently arise in many reliability studies,such as accelerated life tests studies.This paper considers the part of life data where failure and censoring observations may exist.To develop statistical methods and theory for the analysis of these data,a new approach was proposed to obtain the exact lower and upper confidence limits for the mean life of the exponential distribution with Type-I censoring data.It is assumed that the acceleration factor is a random variable,and that the distribution of the acceleration factor is known from some empirical information or the meta analysis.A method for constructing the lower and upper confidence limits for the parameter based on an ordering relation among the sample space was proposed.Simulation studies and analyses of two examples suggest that the proposed method performed well.展开更多
文摘Background: Type 2 diabetes (T2D) remains a major global public health problem. This complex metabolic disorder can lead to various complications, including cardiovascular diseases (leading cause of death) in T2D. Among the biochemical markers associated with increased risk for cardiovascular disease, homocysteine is currently one of the predictive markers under evaluation. We investigate the link between hyperhomocysteinemia and diabetes complications in DT2 population in Brazzaville. Methodology: We conducted a cross-sectional analytical study, from October to December 2022. One hundred and fifty participants were included, 100 patients T2D (34 with complications, 33 with comorbidities, 33 without), and 50 patients controls. Sociodemographic and clinical characteristics were collected. Homocysteine (Hcy) serum levels were measured using Sandwich ELISA method. Results: Study population was composed of 50% males and 50% females with sex ratio of 1;mean age was 52.2 ± 10.8 years (30 - 83). The prevalence of hyperhomocysteinemia (HHcy) was 36% (20% moderate Hcy, 15% intermediate and 1% severe). Mean Hcy concentration was 31.9 μmol/l (18 - 103). Age, gender and physical inactivity were strongly correlated to Hcy (OR of 3.5;9.4 and 3 respectively). Multivariate analysis showed that HHcy was a risk accelerator for degenerative complications (stroke: OR = 6.2;ischemic heart disease: 4.9;neuropathy: 9.2;retinopathy: 4.5 and peripheral arterial disease: 4.9). Conclusion: These findings suggest that hyperhomocysteinemia can be considered as a predictive marker to be taken into account in targeting cardiovascular risk in Congolese subjects with T2D.
基金The work was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutes of MOE, PRC
文摘A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and restrictive conditions, which can affect the performance of the algorithm. In this paper, the sufficient conditions for the asymptotic stability of an acceleration factor and inertia weight are deduced, the value of the inertia weight w is enhanced to ( 1, 1). Furthermore a new adaptive PSO algorithm - Acceleration Factor Harmonious PSO (AFHPSO) is proposed, and is proved to be a global search algorithm. AFHPSO is used for the parameter design of a fuzzy controller for a linear motor driving servo system. The performance of the nonlinear model for the servo system demonstrates the effectiveness of the optimized fuzzy controller and AFHPSO.
基金This research was supported by The Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB650070/0168)This research block grants was managed under Rajamangala University of Technology Thanyaburi(FRB65E0634M.3).
文摘A novel adaptive multiple dependent state sampling plan(AMDSSP)was designed to inspect products from a continuous manufacturing process under the accelerated life test(ALT)using both double sampling plan(DSP)and multiple dependent state sampling plan(MDSSP)concepts.Under accelerated conditions,the lifetime of a product follows the Weibull distribution with a known shape parameter,while the scale parameter can be determined using the acceleration factor(AF).The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive.An economic design of the proposed sampling plan was also considered for the ALT.A genetic algorithm with nonlinear optimization was used to estimate optimal plan parameters to minimize the average sample number(ASN)and total cost of inspection(TC)under both producer’s and consumer’s risks.Numerical results are presented to support the AMDSSP for the ALT,while performance comparisons between the AMDSSP,the MDSSP and a single sampling plan(SSP)for the ALT are discussed.Results indicated that the AMDSSP was more flexible and efficient for ASN and TC than the MDSSP and SSP plans under accelerated conditions.The AMDSSP also had a higher operating characteristic(OC)curve than both the existing sampling plans.Two real datasets of electronic devices for the ALT at high temperatures demonstrated the practicality and usefulness of the proposed sampling plan.
基金Funded by the National Natural Science Foundation of China (U21A20150,52208249,51878153,52008196,and 52178216)the National Natural Science Foundation of China Youth Science (52108219)+3 种基金the Deterioration Characteristics and Mechanisms of Cement Concrete with CWPM under Coupled Thermo-Hydro-Chemical Effect,the Youth Science and Technology Foundation of Gansu Province (22JR5RA288)the Research and Demonstration of Key Technologies of Green and Smart Highways in Gansu Province (21ZD3GA002)the Natural Science Innovation Foundation of Gansu Higher Education Institutions (2022CYZC-25)the Support from Research on Key Technologies of Durability Repair of Highway Concrete Bridges,Key Projects of Chongqing Science and Technology Bureau (cstc2021jscx-jbgs0029)。
文摘Aiming at the complex corrosion degradation factors of reinforced concrete and clearing the deterioration mechanism in the constant stress state,a new type of constant current accelerated corrosion method in the saline soil environment was developed.The three-dimensional paraffin isolation specimens and the three-dimensional penetration specimens were taken as the research objects,and the Cl−content and AC impedance Bode diagram were measured.The macro morphology and micro analysis were also used to evaluate the corrosion degradation laws of the two groups of specimens.A constant current three-factor system accelerated model was established for the current acceleration factor,chloride ion,and sulfate ion acceleration factor.The experimental results show that,in the constant stress test of the saline soil environmental conditions,the paraffin isolation layer can effectively isolate corrosive chloride ions,which is a brand-new research method of single factor variable control in the constant stress test.According to the basic corrosion data,the law of constant current acceleration test is summarized and divided into five corrosion degradation stages,and each stage has significant changes in the accelerated corrosion efficiency.The corrosion degradation of a constant stress test is the combined effect of constant current,positive and negative penetration of chloride ions and sulfate ions.
基金Project (2012CB722805) supported by the National Basic Research Program of ChinaProjects (50974083, 51174131) supported by the National Natural Science Foundation of China+1 种基金Project (50774112) supported by the Joint Fund of NSFC and Baosteel, ChinaProject(07QA4021) supported by the Shanghai "Phosphor" Science Foundation, China
文摘The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation
基金The National Key Basic Research Program of China(973 Program)(No.2012CB026200)the Key Project of Chinese Ministry of Education(No.113029A)+1 种基金the National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAB03B09)the Fundamental Research Funds for the Central Universities
文摘This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.
文摘There are some adjustable parameters which directly influence the performance and stability of Particle Swarm Optimization algorithm. In this paper, stabilities of PSO with constant parameters and time-varying parameters are analyzed without Lipschitz constraint. Necessary and sufficient stability conditions for acceleration factor P and inertia weight w are presented. Experiments on benchmark functions show the good performance of PSO satisfying the stability condition, even without Lipschitz constraint. And the inertia weight ω value is enhanced to (-1,1). Keywords Lipschitz constraint - Time-varying discrete system - Adaptive acceleration factor - Stability
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found that the MDS not only quickly assesses the long-term reliability of solder joints within days,but can also mimic similar failure mechanisms in accelerated thermal cycling (ATC) tests. Based on the MDS and ATC reliability experiments,the acceleration factors (AF) were obtained for different reliability testing conditions.Furthermore,by using the creep constitutive relation and fatigue life model developed in part I,a numerical approach was established for the purpose of virtual life prediction of solder joints. The simulation results were found to be in good agreement with the test results from the MDS.As a result,a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of plastic BGA assembly.
文摘Most manufacturers of solar modules guarantee the minimum performance of their modules for 20 to 25 years, and 30-year warranties have been introduced. The warranty typically guarantees that the modules will perform to at least 90% capacity in the first 10 years and to at least 80% in the following 10 - 15 years. Early degradation resulting from design flaws, materials or processing issues is often apparent from startup to the first few years in service. Importantly, many module failures and performance losses are the result of gradual accumulated damage resulting from long-term outdoor exposure in harsh environments, referred. Many of these processes occur on relatively long time scales and the various degradation processes may be chemical, electrical, thermal or mechanical in nature. These are either initiated or accelerated by the combined stresses of the service environment, in particular solar radiation, temperature and moisture, and other stresses such as salt air, wind and snow. Accelerated Life Testing (ALT) test methodology is normally predicated on first being able to reproduce a specific degradation or failure mode without altering it (correlation);and, second, to produce that result in less than real-time acceleration. Degradation and failure may result when an applied stress exceeds material or product strength. This may be a one-time catastrophic event, the result of cyclic fatigue, or a gradual decline in requisite properties due to ageing mechanisms. Engineers in the manufacturing industries have used accelerated test (AT) experiments for many decades. The purpose of AT experiments is to acquire reliability information quickly. Test units of a material, component, subsystem or entire systems are subjected to higher-than-usual levels of one or more accelerating variables such as temperature or stress. Then the AT results are used to predict life of the units at use conditions. The extrapolation is typically justified (correctly or incorrectly) on the basis of physically motivated models or a combination of empirical model fitting with a sufficient amount of previous experience in testing similar units. The need to extrapolate in both time and the accelerating variables generally necessitates the use of fully parametric models. Statisticians have made important contributions in the development of appropriate stochastic models for AT data [typically a distribution for the response and regression relationships between the parameters of this distribution and the accelerating variable(s)], statistical methods for AT planning (choice of accelerating variable levels and allocation of available test units to those levels) and methods of estimation of suitable reliability metrics. This paper provides a review of many of the AT models that have been used successfully in this area.
文摘As a reliability quantitative specification, parametric accelerated life testing was used to assess the reliability of a newly designed compressor of a commercial refrigerator subjected to repetitive stresses. A generalized life-stress failure model and new sample size equation with a new load concept were derived starting with the basic refrigeration cycle. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly evaluate the expected lifetime. The design of this testing should help an engineer uncover the design parameters affecting reliability during the design process of the compressor system. Consequently, it should help companies improve product reliability and avoid recalls due to the product failures in the field. A newly designed compressor in a commercial refrigerator was used as a test case.
基金supported by Aeronautical Science Foundation(Grant No.00B53010)Astronautical Base Science Foundation(Grant No.2003CH0502)Natural Science Foundation of Shaanxi Province(Grant No.2003CS0501).
文摘The energy expression is presented for a failure mechanism, and it is appliedin an Accelerated Life Test (ALT) and an Accelerated Reliability Growth Test (ARGT). The conditionsof the common failure mechanism are obtained. The essential relationship between the conditions andthe Accelerated Factor (A_f) is proposed by using the energy model.
文摘Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical loads in the assembly were analyzed. The acceleration factor was derived from a generalized life-stress failure model with a new load concept. To reproduce the failure modes and mechanisms causing the fracture, new sample size equation was derived. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly reproduce early failure in field. Consequently, the failure modes and mechanisms found were identical with those of the failed sample. The design of this testing should help an engineer uncover the design parameters affecting the reliability of fractured helix upper dispenser in field. By eliminating the design flaws, gaps and weldline, the B1 life of the redesign of helix upper dispenser is now guaranteed to be over 10 years with a yearly failure rate of 0.1% that is the reliability quantitative test specifications (RQ).
基金supported by the Ministry Level Project of China
文摘Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.
基金supported by the National Natural Science Foundation of China(No.61104182)
文摘Abstract Lognormal distribution is commonly used in engineering. It is also a life distribution of important research values. For long-life products follow this distribution, it is necessary to apply accelerated testing techniques to product demonstration. This paper describes the development of accelerated life testing sampling plans (ALSPs) for lognormal distribution under time-censoring conditions. ALSPs take both producer and consumer risks into account, and they can be designed to work whether acceleration factor (AF) is known or unknown. When AF is known, lift testing is assumed to be conducted under accelerated conditions with time-censoring. The producer and con- sumer risks are satisfied, and the size of test sample and the size of acceptance number arc opti- mized. Then sensitivity analyses are conducted. When AF is unknown, two or more predetermined levels of accelerated stress are used. The sample sizes and sample proportion allo- cated to each stress level are optimized. The acceptance constant that satisfies producer and consumer risk is obtdned by minimizing the generalized asymptotic variance of the test statistics. Finally, the properties of the two ALSPs (one for known-AF conditions and one for unknown AF conditions) are investigated to show that the proposed method is corrcct and usablc through numerical examples.
文摘In several industrial fields like air transport,energy industry and military domain,maintenance actions are carried out during downtimes in order to maintain the reliability and availability of production system.In such a circumstance,selective maintenance strategy is considered the reliable solution for selecting the faulty components to achieve the next mission without stopping.In this paper,a novel multi-level decision making approach based on data mining techniques is investigated to determine an optimal selective maintenance scheduling.At the first-level,the age acceleration factor and its impact on the component nominal age are used to establish the local failures.This first decision making employed K-means clustering algorithm that exploited the historical maintenance actions.Based on the first-level intervention plan,the remaining-levels identify the stochastic dependence among components by relying upon Apriori association rules algorithm,which allows to discover of the failure occurrence order.In addition,at each decision making level,an optimization model combined to a set of exclusion rules are called to supply the optimal selective maintenance plan within a reasonable time,minimizing the total maintenance cost under a required reliability threshold.To illustrate the robustness of the proposed strategy,numerical examples and a FMS real study case have been solved.
基金Supported in part by the National Natural Science Foundation of China(Grant No.11171007)。
文摘Life data frequently arise in many reliability studies,such as accelerated life tests studies.This paper considers the part of life data where failure and censoring observations may exist.To develop statistical methods and theory for the analysis of these data,a new approach was proposed to obtain the exact lower and upper confidence limits for the mean life of the exponential distribution with Type-I censoring data.It is assumed that the acceleration factor is a random variable,and that the distribution of the acceleration factor is known from some empirical information or the meta analysis.A method for constructing the lower and upper confidence limits for the parameter based on an ordering relation among the sample space was proposed.Simulation studies and analyses of two examples suggest that the proposed method performed well.