期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Attenuation of peak ground accelerations from the great Wenchuan earthquake 被引量:14
1
作者 Wang Dong Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第2期179-188,共10页
Over 800 accelerograms recorded by 272 ground-level stations during the Wenchuan earthquake are used to analyze the influence of rupture distance, local site conditions and azimuth on peak ground accelerations (PGAs... Over 800 accelerograms recorded by 272 ground-level stations during the Wenchuan earthquake are used to analyze the influence of rupture distance, local site conditions and azimuth on peak ground accelerations (PGAs). To achieve a better understanding of the characteristics of ground motions, the spatial distributions of the EW, NS and UD components of PGAs are obtained. Comparisons between the EW and NS components, the fault-normal and fault-parallel components, and the vertical and horizontal components of PGAs are performed, and the regression formula of the vertical-to-horizontal ratio of PGAs is developed. The attenuation relationship of peak horizontal accelerations (PHAs) is compared with several contemporary attenuation relationships. In addition, an analysis of residuals is conducted to identify the potential effects of rupture distance, azimuth and site conditions on the observed values of PHAs. The analysis focuses on medium-hard soil site conditions, as they provided most of the data used in this study. 展开更多
关键词 Wenchuan earthquake peak ground acceleration (PGA) ATTENUATION rupture distance AZIMUTH
下载PDF
Seismic force demands on acceleration-sensitive nonstructural components:a state-of-the-art review 被引量:4
2
作者 Wang Tao Shang Qingxue Li Jichao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期39-62,共24页
Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionalit... Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes. 展开更多
关键词 nonstructural components peak floor acceleration floor response spectra component amplification factor
下载PDF
Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations 被引量:3
3
作者 N.V.Silacheva U.K.Kulbayeva N.A.Kravchenko 《Geodesy and Geodynamics》 2018年第2期131-141,共11页
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment... As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article. 展开更多
关键词 Probabilistic seismic hazard assessment Seismic zoning map Peak ground acceleration Seismic sources Seismotectonic setting Seismic regime Ground motion prediction equations
下载PDF
Effect of seismic super-shear rupture on the directivity of ground motion acceleration 被引量:1
4
作者 Hu Jinjun Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期519-527,共9页
The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element me... The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element method was adopted to calculate the ground motion in the horizontal layered half space. An analysis of peak ground acceleration (PGA) indicates that similar to the sub-shear situation, directivity also exists in the super-shear situation. However, there are some differences as tbllows: (1) The PGA of the fault-normal component decreases with super-shear velocity, and the areas that were significantly affected by directivity in the PGA field changed from a cone-shaped region in the forward direction in a sub-shear situation to a limited near-fault region in a super-shear situation. (2) The PGA of the fault-parallel and vertical component is not as sensitive as the fault-normal component to the increasing super-shear velocity. (3) The PGA of the fault-normal component is not always greater than the fault-parallel component when the rupture velocity exceeds the shear wave velocity. 展开更多
关键词 ground motion DIRECTIVITY rupture velocity super-shear rupture peak ground acceleration
下载PDF
Prediction of peak ground acceleration of Iran's tectonic regions using a hybrid soft computing technique 被引量:1
5
作者 Mostafa Gandomi Mohsen Soltanpour +1 位作者 Mohammad R.Zolfaghari Amir H.Gandomi 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期75-82,共8页
A new model is derived to predict the peak ground acceleration(PGA) utilizing a hybrid method coupling artificial neural network(ANN) and simulated annealing(SA), called SA-ANN. The proposed model relates PGA to... A new model is derived to predict the peak ground acceleration(PGA) utilizing a hybrid method coupling artificial neural network(ANN) and simulated annealing(SA), called SA-ANN. The proposed model relates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity,faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes,which happened in Iran’s tectonic regions, is used to establish the model. For more validity verification,the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior to the single ANN and other existing attenuation models. The SA-ANN model is highly correlated to the actual records(R=0.835 and r =0.0908) and it is subsequently converted into a tractable design equation. 展开更多
关键词 Peak ground acceleration Artificial neural networks Simulated annealing Explicit formulation
下载PDF
Comparison of the cumulative absolute velocity and acceleration peak value based on Wenchuan earthquake data 被引量:1
6
作者 Xia Jiening Chen Zhigao +3 位作者 Huang Jun Yang Jiang Yang Jian Wu Peng 《Geodesy and Geodynamics》 2014年第3期46-54,共9页
This paper discusses and presents the cumulative absolute velocity (CAV) parameters of the Wenchuan earthquake. Additionally, the CAV calculated from recorded data for the earthquake is compared to the peak ground a... This paper discusses and presents the cumulative absolute velocity (CAV) parameters of the Wenchuan earthquake. Additionally, the CAV calculated from recorded data for the earthquake is compared to the peak ground acceleration(PGA), based on a brief analysis of background information. Accordingly, the paper studied the relationship between the CAV and PGA, and 3 CAV/PGA ratio charts were obtained in three different sub-directions. Linear and polynomial fitting operations were then used to analyze the potential discipline and characteristics in these directions. Finally, in the study, we investigated the applicability of using the CAV parameter for earthquake observation systems, and the CAV parameter was paired with the currently used PGA to provide earthquake observers and emergency responders with a theoretical basis. 展开更多
关键词 Wenchuan earthquake Cumulative Absolute Vlocity(CAV) Peak Ground acceleration (PGA) comparative analysis FITTING
下载PDF
Estimation of peak relative velocity and peak absolute acceleration of linear SDOF systems 被引量:1
7
作者 George C. Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第2期213-213,共1页
We have found some mistakes in the article by Jianwei Song et al. (2007). The revisions are given below:
关键词 SDOF Estimation of peak relative velocity and peak absolute acceleration of linear SDOF systems
下载PDF
Amplification Effect of Peak Ground Motion Acceleration in ClassⅡ and Ⅲ Sites over Shandong Province 被引量:1
8
作者 Diao Ting Chen Shijun Jiang Zaofeng 《Earthquake Research in China》 2011年第4期498-506,共9页
In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil ... In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper. 展开更多
关键词 Seismic ground motion Peak ground acceleration Site condition Exceedanceprobability amplification factor
下载PDF
A new empirical equation of shear wave velocity to predict the different peak surface accelerations for Jakarta city
9
作者 Munirwansyah Munirwansyah Mohamad Ali Fulazzaky +3 位作者 Halida Yunita Reza Pahlevi Munirwan Jonbi Jonbi Kasni Sumeru 《Geodesy and Geodynamics》 2020年第6期455-467,共13页
Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-numb... Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-number(N)value for Jakarta city are available up to 100 m below the Earth’s surface even though the typical depths to bedrock are in excess of 100 m.This study referred to the base motion peak ground acceleration(PGA)values of 0.100 g,0.218 g and 0.378 g to predict the PSA values using the Nonlinear Earthquake site Response Analysis(NERA)to analyse a simulated dataset for the bedrock depths of 100 m,200 m,300 m,400 m and 500 m with conditioned by clayey and sandy soils.A new empirical equation of Vs=102.48 N0.297(m/s)was proposed to calculate the values of Vsused as an input parameter in the NERA programme for the prediction of seismic wave propagation.The results showed that the PSA values are dependent on the amplitude of seismic waves,depths of bedrock and the local site conditions.Changes in the PSA values from 41.0%to 51.5%and from 46.1%to 79.8%for the bedrocks overlain by sand,from 20.0%to 42.1%and from 45.9%to 58.8%for the bedrocks overlain by clay with increasing of bedrock depths from 200 m to 300 m and from 400 m to 500 m,respectively,were predicted for a 2500-year return period earthquake.Decreases in the PSA values by 41.0%,51.5%,46.1%,79.8%for the bedrocks overlain by sand and by 20.0%,42.1%,45.9%,58.8%for the bedrocks overlain by clay were predicted for a 2500-year return period earthquake due to the bedrock depth changes of 200 m,300 m,400 m,500 m.Large-magnitude earthquake of Jakarta city has a significant effect on an increase or a decrease of the PSA value with depth of bedrock and may cause the vibration damage to buildings and other constructions on the ground.The analysis of the PSA value and PSA ratio influenced by the PGA value,bedrock depth and local soil conditions will make a contribution to the design of earthquake-safe building for Jakarta city in the future. 展开更多
关键词 Bedrock depth Clayey soil Jakarta city Peak ground acceleration Peak surface acceleration Sandy soil
下载PDF
顺倾及反倾层状碎裂结构斜坡地震反应的大型振动台试验研究
10
作者 王通 刘先峰 +4 位作者 袁胜洋 蒋关鲁 胡金山 邵珠杰 田士军 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期489-501,共13页
西南艰险山区分布着大量的不同倾向的层状碎裂结构斜坡,地震作用下极易发生崩塌、滑坡等灾害,对在建的川藏铁路造成严重威胁。通过大型振动台模型试验,研究了强震条件下顺倾、反倾层状碎裂结构斜坡的动力响应、失稳破坏模式以及能量传... 西南艰险山区分布着大量的不同倾向的层状碎裂结构斜坡,地震作用下极易发生崩塌、滑坡等灾害,对在建的川藏铁路造成严重威胁。通过大型振动台模型试验,研究了强震条件下顺倾、反倾层状碎裂结构斜坡的动力响应、失稳破坏模式以及能量传递规律。试验结果表明:反倾斜坡的抗震性能显著优于顺倾斜坡;顺倾斜坡的破坏模式主要为拉裂-剪切-隆起-滑移型破坏,反倾斜坡的破坏模式主要为拉伸-弯曲-倾倒-崩塌型破坏;反倾斜坡的自振频率高于顺倾斜坡,顺倾斜坡的自振频率随震级的增加而逐渐降低,而反倾斜坡的自振频率在地震波幅值为0.4g~0.7g时出现反复震荡现象;顺倾斜坡存在明显的高程放大效应和趋表效应,反倾斜坡存在高程放大效应,其内部的加速度响应大于坡表。边际谱识别显示:顺倾斜坡的边际谱幅值(peak of marginal spectrum amplitude,简称PMSA)突变在坡腰上部最显著,说明该位置附近地震波的能量损失最大,反映出顺倾斜坡在坡腰上部附近形成了滑动破坏面;反倾斜坡的PMSA在坡肩处降低得最为显著,反映出坡肩部位损伤最为严重,易发生局部崩塌破坏。分析结果与试验现象能够较好地吻合,进一步揭示了不同结构类型层状碎裂结构斜坡在强震作用下的动力响应与失稳破坏模式,为川藏铁路的安全建设提供了依据。 展开更多
关键词 顺倾斜坡 反倾斜坡 振动台试验 地震加速度峰值(peak ground acceleration 简称PGA)放大系数 破坏模式 损伤识别
下载PDF
Aseismic performances of constrained damping lining structures made of rubber-sand-concrete
11
作者 Xiancheng Mei Qian Sheng +4 位作者 Jian Chen Zhen Cui Jianhe Li Chuanqi Li Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1522-1537,共16页
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ... Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m. 展开更多
关键词 Constrained damping structure Aseismic performance Hammer impact tests Damping layer Peak ground acceleration Overburden depth
下载PDF
Detailed seismic zoning of the East Kazakhstan region in the Republic of Kazakhstan
12
作者 Natalya V.Silacheva N.P.Stepanenko +2 位作者 O.K.Kurilova A.D.Kudabayeva A.T.Danabayeva 《Geodesy and Geodynamics》 EI CSCD 2024年第2期156-165,共10页
Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,develo... Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,developed by our Institute of Seismology using a new methodological approach for Kazakhstan.The article is about creating the first normative map of the Detailed Seismic Zoning on a probabilistic foundation for the Republic of Kazakhstan’s East Kazakhstan region.We carried out the probabilistic assessment of seismic hazard using a methodology consistent with the main provisions of Eurocode 8and updated compared with that used in developing maps of Kazakhstan’s General Seismic Zoning and seismic microzoning of Almaty.The most thorough and current data accessible for the area under consideration were combined with contemporary analytical techniques.Updates have been done to not only the databases being used but also the way seismic sources were shown,including active faults now.On a scale of 1:1000000,precise seismic zoning maps of the East Kazakhstan region were created for two probabilities of exceedance:10%and 2%in 50 years in terms of peak ground accelerations and macroseismic intensities.The obtained seismic hazard distribution is generally consistent with the General Seismic Zoning of Kazakhstan’s previous findings.However,because active faults were included and a thoroughly revised catalog was used,there are more pronounced zones of increased danger along the fault in the western part of the region.In the west of the territory,acceleration values also increased due to a more accurate consideration of seismotectonic conditions.Zoning maps are the basis for developing new state building regulations of the Republic of Kazakhstan. 展开更多
关键词 Probabilistic seismic hazard assessment Detailed seismic zoning Peak ground acceleration Microseismical intensity
下载PDF
Experimental study on concrete columns hybrid reinforced by steel and FRP bars under seismic loading 被引量:1
13
作者 孙泽阳 吴刚 +1 位作者 王燕华 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期439-444,共6页
In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordina... In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance. 展开更多
关键词 concrete column shaking table test hybrid reinforcement peak ground acceleration strain distribution
下载PDF
Seismic response of tunnel under normal fault slips by shaking table test technique 被引量:13
14
作者 FAN Ling CHEN Jie-ling +3 位作者 PENG Shu-quan QI Bin-xi ZHOU Qi-wen WANG Fan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1306-1319,共14页
Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthqu... Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip. 展开更多
关键词 TUNNEL normal fault EARTHQUAKE fault slip shaking table test peak acceleration
下载PDF
Direct use of peak ground motion parameters for the estimation of inelastic displacement ratio of SDOF systems subjected to repeated far fault ground motions 被引量:6
15
作者 Cengizhan Durucan Muhammed Gümüs 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期771-785,共15页
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par... This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar. 展开更多
关键词 C1 peak ground velocity peak ground acceleration far fault ground motions sequential ground motions
下载PDF
Vertical-to-horizontal response spectral ratio for offshore ground motions:Analysis and simplified design equation 被引量:12
16
作者 陈宝魁 王东升 +2 位作者 李宏男 孙治国 李超 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期203-216,共14页
In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(... In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures. 展开更多
关键词 offshore ground motion vertical component simplified design equation vertical-to-horizontal response spectral ratio (V/H) vertical-to-horizontal peak ground acceleration ratio (V/H PGA ratio) K-NET network seafloor earthquake measuring system (SEMS)
下载PDF
Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models 被引量:4
17
作者 He-Qing Mu Rong-Rong Xu Ka-Veng Yuen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期1-11,共11页
Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,t... Peak ground acceleration(PGA) estimation is an important task in earthquake engineering practice.One of the most well-known models is the Boore-Joyner-Fumal formula,which estimates the PGA using the moment magnitude,the site-to-fault distance and the site foundation properties.In the present study,the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an effi ciency-robustness balanced formula is proposed.For this purpose,a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship.In this approach,each model class(a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data.The one with the highest plausibility is robust since it possesses the optimal balance between the data fi tting capability and the sensitivity to noise.A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis.The optimal predictive formula is proposed based on this database.It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore,Joyner and Fumal(1993). 展开更多
关键词 Bayesian inference Boore-Joyner-Fumal formula heterogeneity variance input-dependent variance model class selection peak ground acceleration seismic attenuation
下载PDF
Centrifuge modelling of ground-borne vibrations induced by railway traffic in underground tunnels 被引量:3
18
作者 Yang Wenbo Qian Zhihao +4 位作者 Tu Jiulin Zhou Ziyang Yan Qixiang Fang Yong He Chuan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期517-528,共12页
Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based ... Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge test was conducted with a small-scale model in 1 g and 50 g stress field environments.An aluminum tube was embedded in sand to model the underground tunnel.A small parallel pre-stressed actuator(PPA)was employed to apply vibration loads on the tunnel invert.The model responses were measured using accelerometers.Both time and frequency domain analyzes were performed.The test results demonstrated that electronic noise had a clear impact on the test results and should be eliminated.It also found that the dynamic response of both the tunnel and soil were affected by the stress field.Therefore,it is important to account for the stress field effects when assessing the ground-borne vibration from tunnels. 展开更多
关键词 centrifuge test stress field frequency response function peak particle acceleration dynamic response
下载PDF
Relationships between ground motion parameters and landslides induced by Wenchuan earthquake 被引量:3
19
作者 Xiuying Wang Gaozhong Nie Dengwei Wang 《Earthquake Science》 CSCD 2010年第3期233-242,共10页
The MS8.0 Wenchuan earthquake induced severe landslide hazards.For the first time in China,large numbers of strong motion records were obtained during the Wenchuan earthquake,providing the opportunity to study the rel... The MS8.0 Wenchuan earthquake induced severe landslide hazards.For the first time in China,large numbers of strong motion records were obtained during the Wenchuan earthquake,providing the opportunity to study the relationships between ground-motion parameters and the earthquake-induced landslides.Nearly 40 groups of records from the main shock distributed along the Longmenshan fault lines were used to carry out this study.The results appropriate to the Longmenshan area are as follows:1 The threshold of the peak ground acceleration(PGA) is about 0.7 m/s2.When the PGA reaches 2 m/s2,the landslide hazards are very serious; 2 The threshold of the peak ground velocity(PGV) is about 0.5 m/s.When the PGV reaches 1.5 m/s,severe landslide hazards will be induced; 3 The threshold for the Arias intensity(Ia) is about 0.2 m/s.When the Ia in one horizontal direction reaches 2 m/s,landslide hazards will be very serious; 4 As for the relevance order of the parameters to earthquake-induced landslides,Ia is the leading parameter,followed by PGV,and finally PGA.The results presented in this paper are consistent with the results from other studies,indicating that the threshold of the ground motion parameters for strong earthquakes is of the same order of magnitude as that of moderate earthquakes.Landslide density of local sites fluctuated with the increase of ground motion intensity if the thresholds were reached.When the upper limits are exceeded,the landslide density remains at a certain level with relatively little variation. 展开更多
关键词 Wenchuan earthquake earthquake-induced landslide peak ground acceleration peak ground velocity Arias intensity
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:2
20
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs Impact loading Eccentric impacts Concrete models Finite element analysis Damage profiles Stresses Peak acceleration Failure modes Damage dissipation energy CRACKING Drop-weight locations
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部