The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmissi...The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.展开更多
Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and undergrou...Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.展开更多
A system model based on joint layer mechanism is formulated for optimal data scheduling over fixed point-to-point links in OFDMA ad-hoc wireless networks. A distributed scheduling algorithm (DSA) for system model op...A system model based on joint layer mechanism is formulated for optimal data scheduling over fixed point-to-point links in OFDMA ad-hoc wireless networks. A distributed scheduling algorithm (DSA) for system model optimization is proposed that combines the randomly chosen subcarrier according to the channel condition of local subcarriers with link power control to limit interference caused by the reuse of subcarrier among links. For the global fairness improvement of algorithms, a global power control scheduling algorithm (GPCSA) based on the proposed DSA is presented and dynamically allocates global power according to difference between average carrier-noise-ratio of selected local links and system link protection ratio. Simulation results demonstrate that the proposed algorithms achieve better efficiency and fairness compared with other existing algorithms.展开更多
The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve...The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve the capability of the truncated binary exponential back-off algorithm.In the new strategies,the sizes of the initial window size or the operating window sizes are adjusted dynamically,which always bring a significant improvement for the self-adaptability of the original algorithm.A series of experiments are simulated and the results verify that the new strategies can make the implementation more stable and effective than the original algorithm.展开更多
Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access technology considered as a key component in 5G air interface design. In SCMA, the incoming bits are directly mapped to multi-dimensional cons...Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access technology considered as a key component in 5G air interface design. In SCMA, the incoming bits are directly mapped to multi-dimensional constellation vectors known as SCMA codewords, which are then mapped onto blocks of physical resource elements in a sparse manner. The number of codewords that can be non-orthogonally multiplexed in each SCMA block is much larger than the number of resource elements therein, so the system is overloaded and can support larger number of users. The joint optimization of multi-dimensional modulation and low density spreading in SCMA codebook design ensures the SCMA receiver to recover the coded bits with high reliability and low complexity. The flexibility in design and the robustness in performance further prove SCMA to be a promising technology to meet the 5G communication demands such as massive connectivity and low latency transmissions.展开更多
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental e...A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.展开更多
基金Supported by the National Natural Science Foundation of China(No.61771186)Outstanding Youth Project of Heilongjiang Natural Science Foundation(No.YQ2020F012)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)。
文摘The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.
文摘Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.
文摘A system model based on joint layer mechanism is formulated for optimal data scheduling over fixed point-to-point links in OFDMA ad-hoc wireless networks. A distributed scheduling algorithm (DSA) for system model optimization is proposed that combines the randomly chosen subcarrier according to the channel condition of local subcarriers with link power control to limit interference caused by the reuse of subcarrier among links. For the global fairness improvement of algorithms, a global power control scheduling algorithm (GPCSA) based on the proposed DSA is presented and dynamically allocates global power according to difference between average carrier-noise-ratio of selected local links and system link protection ratio. Simulation results demonstrate that the proposed algorithms achieve better efficiency and fairness compared with other existing algorithms.
基金This work was supported by the National Natural Science Foundation of China(No.10371097).
文摘The truncated binary exponential back-off algorithm is one of the most effective methods applied in collision resolution process of random multi-access channel.In this study,two new strategies are presented to improve the capability of the truncated binary exponential back-off algorithm.In the new strategies,the sizes of the initial window size or the operating window sizes are adjusted dynamically,which always bring a significant improvement for the self-adaptability of the original algorithm.A series of experiments are simulated and the results verify that the new strategies can make the implementation more stable and effective than the original algorithm.
基金supported by the National Basic Research Program of China(973 Program 2012CB316000)the National Major Projects of China(2015ZX03002010)
文摘Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access technology considered as a key component in 5G air interface design. In SCMA, the incoming bits are directly mapped to multi-dimensional constellation vectors known as SCMA codewords, which are then mapped onto blocks of physical resource elements in a sparse manner. The number of codewords that can be non-orthogonally multiplexed in each SCMA block is much larger than the number of resource elements therein, so the system is overloaded and can support larger number of users. The joint optimization of multi-dimensional modulation and low density spreading in SCMA codebook design ensures the SCMA receiver to recover the coded bits with high reliability and low complexity. The flexibility in design and the robustness in performance further prove SCMA to be a promising technology to meet the 5G communication demands such as massive connectivity and low latency transmissions.
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2014AA123103)
文摘A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.