Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomi...Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.展开更多
We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1 T1R) resistance random access memory (RRAM) device. All the devices are operated...We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1 T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (FIRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher FIRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.展开更多
Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,...Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stab...We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.展开更多
Electric field control of magnetism through nanoionics has attracted tremendous attention owing to its high efficiency and low power consumption.In solid-state dielectrics,an electric field drives the redistribution o...Electric field control of magnetism through nanoionics has attracted tremendous attention owing to its high efficiency and low power consumption.In solid-state dielectrics,an electric field drives the redistribution of ions to create onedimensional magnetic conductive nanostructures,enabling the realization of intriguing magnetoresistance(MR)effects.Here,we explored the electric-controlled nickel and oxygen ion migration in Pt/HfO_(2-x)/NiO_(y)/Ni heterojunctions for MR modulation.By adjusting the voltage polarity and amplitude,the magnetic conductive filaments with mixed nickel and oxygen vacancy are constructed.This results in the reduction of device resistance by~10^(3)folds,and leads to an intriguing partial asymmetric MR effect.We show that the difference of the device resistance under positive and negative saturation magnetic fields exhibits good linear dependence on the magnetic field angle,which can be used for magnetic field direction detection.Our study suggests the potential of electrically controlled ion migration in creating novel magnetic nanostructures for sensor applications.展开更多
In this letter,the Ta/HfO/BN/TiN resistive switching devices are fabricated and they exhibit low power consumption and high uniformity each.The reset current is reduced for the HfO/BN bilayer device compared with that...In this letter,the Ta/HfO/BN/TiN resistive switching devices are fabricated and they exhibit low power consumption and high uniformity each.The reset current is reduced for the HfO/BN bilayer device compared with that for the Ta/HfO/TiN structure.Furthermore,the reset current decreases with increasing BN thickness.The HfOlayer is a dominating switching layer,while the low-permittivity and high-resistivity BN layer acts as a barrier of electrons injection into TiN electrode.The current conduction mechanism of low resistance state in the HfO/BN bilayer device is space-chargelimited current(SCLC),while it is Ohmic conduction in the HfOdevice.展开更多
The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light...The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light, an initial forming process is unnecessary for the production of transparent memory. Fittings to the current-voltage curves reveal the interfacial conduction in the devices. The first-principles calculation indicates that the oxygen vacancies in cubic BaSnO3 will form the defective energy level below the bottom of conduction band. The field-induced resistance change can be explained based on the change of the interracial Schottky barrier, due to the migration of oxygen vacancies in the vicinity of the interface. This work presents a candidate material BaSnO3 for the application of resistive random access memory to transparent electronics.展开更多
As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabri...As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs.展开更多
Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of swit...Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of switch ratio, endurance properties, retention time and multilevel storage. It is revealed that the RS characteristics show strong dependence on technological parameters mainly by altering the defects (oxygen vacancies) in the film. The sample with thickness of 2Onto and Ar/O2 ratio of 12:3 exhibits the best RS behavior with the potential of multilevel storage. The conduction mechanism of all the films is interpreted based on the filamentary model.展开更多
For Pt(Ag)/ZnO single-layer/Pt structure,random 10 formation and rupture of conductive filaments composed by oxygen vacancies or metallic ions often cause dispersion problems of resistive switching(RS)parameters,which...For Pt(Ag)/ZnO single-layer/Pt structure,random 10 formation and rupture of conductive filaments composed by oxygen vacancies or metallic ions often cause dispersion problems of resistive switching(RS)parameters,which is disadvantageous to devices application.In this study,ZnO/CoOx/ZnO(ZCZ)tri-layers were utilized as the switching layers to investigate their RS properties as compared with ZnO-based single-layer devices.It is interestingly noted that Pt/ZCZ/Pt devices show quite stable bipolar RS behaviors with little resistance value fluctuations compared to Ag/ZCZ/Pt devices and Pt(Ag)/ZnO/Pt devices,which minimize the dispersion of the resistances of RS.This highly stable RS effect of Pt/ZCZ/Pt structure would be promising for high density memory devices.展开更多
Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability...Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability mechanisms of the3 D RRAM array has become a field of intense research. In this work, the endurance performance of the 3D 1D1 R crossbar array under the thermal effect is investigated in terms of numerical simulation. It is revealed that the endurance performance of the 3D 1D1 R array would be seriously deteriorated under thermal effects as the feature size scales down to a relatively small value. A possible method to alleviate the thermal effects is provided and verified by numerical simulation.展开更多
In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room tempe...In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.展开更多
In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductiv...In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament composed of oxygen vacancies. The conduction mechanisms for low and high resistance states are dominated by the ohmic conduc- tion and the trap-controlled space charge limited current (SCLC) mechanism, respectively. The effect of a set compliance current on the switching parameters is also studied: the low resistance and reset current are linearly dependent on the set compliance current in the log-log scale coordinate; and the set and reset voltage increase slightly with the increase of the set compliance current. A series circuit model is proposed to explain the effect of the set compliance current on the resistive switching behaviors.展开更多
The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching...The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching behavior of a single ZnO film and bilayer HfOx/ZnO films as active layers for TRRAM devices was demonstrated. It was revealed that the bilayer TRRAM device with a 10-nm HfOx inserted layer had a more stable resistive switching behavior than other devices including the single layer device, as well as being forming free, and the transmittance was more than 80% in the visible region. For the HfOx/ZnO devices, the current conduction behavior was dominated by the space-charge-limited current mechanism in the low resistive state (LRS) and Schottky emission in the high resistive state (HRS), while the mechanism for single layer devices was controlled by ohmic conduction in the LRS and Poole-Frenkel emission in the HRS.展开更多
We demonstrate the polarization of resistive switching for a Cu/VOx/Cu memory cell.The switching behaviors of Cu/VOx/Cu cell are tested by using a semiconductor device analyzer(Agilent B1500A),and the relative micro...We demonstrate the polarization of resistive switching for a Cu/VOx/Cu memory cell.The switching behaviors of Cu/VOx/Cu cell are tested by using a semiconductor device analyzer(Agilent B1500A),and the relative micro-analysis of I-V characteristics of VOx/Cu is characterized by using a conductive atomic force microscope(CAFM).The I-V test results indicate that both the forming and the reversible resistive switching between low resistance state(LRS) and high resistance state(HRS) can be observed under either positive or negative sweep.The CAFM images for LRS and HRS directly exhibit evidence for the formation and rupture of filaments based on positive or negative voltage.The Cu/VOx/Cu sandwiched structure exhibits reversible resistive switching behavior and shows potential applications in the next generation of nonvolatile memory.展开更多
In this paper, the self-compliance bipolar resistive switching characteristic of an HfO-based memory device with Ag/HfO/Au structure for multilevel storage is investigated. By applying a positive voltage, the dual-ste...In this paper, the self-compliance bipolar resistive switching characteristic of an HfO-based memory device with Ag/HfO/Au structure for multilevel storage is investigated. By applying a positive voltage, the dual-step set processes corresponding to three stable resistance states are observed in the device. The multilevel switching characteristics can still be observed after 48 hours. In addition, the resistance values of all the three states show negligible degradation over 104 s,which may be useful for the applications in nonvolatile multilevel storage.展开更多
We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current-voltage(I-V) curve exhibits a ...We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current-voltage(I-V) curve exhibits a well-established polarization-modulated memristor behavior. At low temperatures(〈 253 K), the I-V curve shows an open circuit voltage(OCV), which possibly originates from the dielectric relaxation effects, accompanied with a current hump due to the polarization reversal displacement current. While at relative higher temperatures(〉 253 K), the I-V behaviors are governed by both space-charge-limited conduction(SCLC) and Ohmic behavior. The polarization reversal is able to trigger the conduction switching from Ohmic to SCLC behavior, leading to the observed ferroelectric resistive switching. At a temperature of〉 298 K, there occurs a new resistive switching hysteresis at high bias voltages, which may be related to defect-mediated effects.展开更多
First-principles calculations are used to investigate the migration path of Ag in the HfO2-based resistive random access memory(Re RAM). The formation energy calculation suggests that there are two different sites(...First-principles calculations are used to investigate the migration path of Ag in the HfO2-based resistive random access memory(Re RAM). The formation energy calculation suggests that there are two different sites(site 1 and site 3) for the incorporation of Ag atoms into the HfO2 unit cell. Thermodynamic analysis shows that the motion of Ag atom in the HfO2 supercell appears to be anisotropic, which is due to the fact that the Ag atom at site 3 moves along the [1ˉ11] orientation,but the Ag atom at site 1 moves along the [001] orientation. The migration barriers of the Ag atoms hopping between neighboring unit cells are calculated along five different orientations. Difficulty in producing motion of the Ag atom varies with the migration barrier: this motion is minimized along [1ˉ11] orientation. Furthermore, The optimal circulation path for Ag migration within the HfO2 supercells is obtained, and is found to be approximately along the [1ˉ11] orientation.Therefore, it is proposed that the positive voltage should be applied along this orientation, the conduction filament may form more easily, which could improve the response time and reduce the power consumption in Re RAM applications.展开更多
Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits com- pared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can...Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits com- pared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can be divided into two categories: graphene RRAM and graphene oxide (GO)/reduced graphene oxide (rGO) RRAM. Using graphene as the electrode, GRRAM can own many good characteristics, such as low power consumption, higher density, transparency, SET voltage modulation, high uniformity, and so on. Graphene flakes sandwiched between two dielectric layers can lower the SET voltage and achieve multilevel switching. Moreover, the GRRAM with rGO and GO as the dielectric or electrode can be simply fabricated. Flexible and high performance RRAM and GO film can be modified by adding other materials layer or making a composite with polymer, nanoparticle, and 2D materials to further improve the performance. Above all, GRRAM shows huge potential to become the next generation memory.展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.51435003&51375092)supported by the Fundamental Research Funds for the Central Universities+1 种基金the Innovative Project for Graduate Students of Jiangsu Province(Grant No.KYLX_0100)the Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBJJ1540)
文摘Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00602,2010CB934200,2011CB921804,2011CB707600,2011AA010401,and 2011AA010402the National Natural Science Foundation of China under Grant Nos61322408,61334007,61376112,61221004,61274091,61106119,61106082,and 61006011
文摘We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1 T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (FIRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher FIRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.
基金supported in part by the Open Fund of State Key Laboratory of Integrated Chips and Systems,Fudan Universityin part by the National Science Foundation of China under Grant No.62304133 and No.62350610271.
文摘Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB925002)the National High Technology Research and Development Program of China (Grant No. 2008AA031401)and Chinese Academy of Sciences
文摘We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1202600)the National Natural Science Foundation of China(Grant Nos.92064011,62174164,61974179,and 61674153)+3 种基金Youth Innovation Promotion Association of the CAS(Grant No.2020297)Natural Science Foundation of Zhejiang Province(Grant No.LR17E020001)Ningbo Natural Science Foundation(Grant No.202003N4029)C.Wong Education Foundation(Grant No.GJTD-2020-11)。
文摘Electric field control of magnetism through nanoionics has attracted tremendous attention owing to its high efficiency and low power consumption.In solid-state dielectrics,an electric field drives the redistribution of ions to create onedimensional magnetic conductive nanostructures,enabling the realization of intriguing magnetoresistance(MR)effects.Here,we explored the electric-controlled nickel and oxygen ion migration in Pt/HfO_(2-x)/NiO_(y)/Ni heterojunctions for MR modulation.By adjusting the voltage polarity and amplitude,the magnetic conductive filaments with mixed nickel and oxygen vacancy are constructed.This results in the reduction of device resistance by~10^(3)folds,and leads to an intriguing partial asymmetric MR effect.We show that the difference of the device resistance under positive and negative saturation magnetic fields exhibits good linear dependence on the magnetic field angle,which can be used for magnetic field direction detection.Our study suggests the potential of electrically controlled ion migration in creating novel magnetic nanostructures for sensor applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274113,11204212,61404091,51502203,and 51502204)the Tianjin Natural Science Foundation,China(Grant Nos.14JCZDJC31500 and 14JCQNJC00800)the Tianjin Science and Technology Developmental Funds of Universities and Colleges,China(Grant No.20130701)
文摘In this letter,the Ta/HfO/BN/TiN resistive switching devices are fabricated and they exhibit low power consumption and high uniformity each.The reset current is reduced for the HfO/BN bilayer device compared with that for the Ta/HfO/TiN structure.Furthermore,the reset current decreases with increasing BN thickness.The HfOlayer is a dominating switching layer,while the low-permittivity and high-resistivity BN layer acts as a barrier of electrons injection into TiN electrode.The current conduction mechanism of low resistance state in the HfO/BN bilayer device is space-chargelimited current(SCLC),while it is Ohmic conduction in the HfOdevice.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174135 and 60976016)the National 973 Project,China(Gant No.0213117005)+3 种基金the State Key Program for Basic Research of China(Grant No.2010CB630704)the Science Foundation of Henan Province,China(Grant No.14A430020)the Science Foundation of Henan University,China(Grant No.SBGJ090503)China Postdoctoral Science Foundation(Grant No.2012M511250)
文摘The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light, an initial forming process is unnecessary for the production of transparent memory. Fittings to the current-voltage curves reveal the interfacial conduction in the devices. The first-principles calculation indicates that the oxygen vacancies in cubic BaSnO3 will form the defective energy level below the bottom of conduction band. The field-induced resistance change can be explained based on the change of the interracial Schottky barrier, due to the migration of oxygen vacancies in the vicinity of the interface. This work presents a candidate material BaSnO3 for the application of resistive random access memory to transparent electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.61006003 and 61674038)the Natural Science Foundation of Fujian Province,China(Grant Nos.2015J01249 and 2010J05134)+1 种基金the Science Foundation of Fujian Education Department of China(Grant No.JAT160073)the Science Foundation of Fujian Provincial Economic and Information Technology Commission of China(Grant No.83016006)
文摘As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs.
基金Supported by the National Natural Science Foundation of China under Grant No 51202196the National Aerospace Science Foundation of China under Grant No 2013ZF53067+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No 2014JQ6204the Fundamental Research Funds for the Central Universities under Grant No 3102014JCQ01032the 111 Project under Grant No B08040
文摘Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of switch ratio, endurance properties, retention time and multilevel storage. It is revealed that the RS characteristics show strong dependence on technological parameters mainly by altering the defects (oxygen vacancies) in the film. The sample with thickness of 2Onto and Ar/O2 ratio of 12:3 exhibits the best RS behavior with the potential of multilevel storage. The conduction mechanism of all the films is interpreted based on the filamentary model.
基金supported by the National Natural Science Foundation of China (Nos.51231004 and 51202125)National Basic Research Program of China (No.2010CB832905)
文摘For Pt(Ag)/ZnO single-layer/Pt structure,random 10 formation and rupture of conductive filaments composed by oxygen vacancies or metallic ions often cause dispersion problems of resistive switching(RS)parameters,which is disadvantageous to devices application.In this study,ZnO/CoOx/ZnO(ZCZ)tri-layers were utilized as the switching layers to investigate their RS properties as compared with ZnO-based single-layer devices.It is interestingly noted that Pt/ZCZ/Pt devices show quite stable bipolar RS behaviors with little resistance value fluctuations compared to Ag/ZCZ/Pt devices and Pt(Ag)/ZnO/Pt devices,which minimize the dispersion of the resistances of RS.This highly stable RS effect of Pt/ZCZ/Pt structure would be promising for high density memory devices.
基金Project supported by the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics of Chinese Academy of Sciences,the National High Technology Research and Development Program of China(Grant No.2014AA032901)the National Natural Science Foundation of China(Grant Nos.61574166,61334007,61306117,61322408,61221004,and 61274091)+1 种基金Beijing Training Project for the Leading Talents in S&T,China(Grant No.Z151100000315008)the CAEP Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201504)
文摘Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability mechanisms of the3 D RRAM array has become a field of intense research. In this work, the endurance performance of the 3D 1D1 R crossbar array under the thermal effect is investigated in terms of numerical simulation. It is revealed that the endurance performance of the 3D 1D1 R array would be seriously deteriorated under thermal effects as the feature size scales down to a relatively small value. A possible method to alleviate the thermal effects is provided and verified by numerical simulation.
基金Project supported by the National Basic Research Program of China(Grant Nos.2008CB925002 and 2010CB934200)the National Natural Science Foundation of China(Grant Nos.60825403 and 50972160)the National High Technology Research and Development Program of China(Grant No.2009AA03Z306)
文摘In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00606)the National Natural Science Foundation of China(Grant Nos.61106106,11304237,61376099,and 11235008)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20130203130002 and 20110203110012)
文摘In this paper, the bipolar resistive switching characteristic is reported in Ti/ZrO2/Pt resistive switching memory de- vices. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament composed of oxygen vacancies. The conduction mechanisms for low and high resistance states are dominated by the ohmic conduc- tion and the trap-controlled space charge limited current (SCLC) mechanism, respectively. The effect of a set compliance current on the switching parameters is also studied: the low resistance and reset current are linearly dependent on the set compliance current in the log-log scale coordinate; and the set and reset voltage increase slightly with the increase of the set compliance current. A series circuit model is proposed to explain the effect of the set compliance current on the resistive switching behaviors.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017yfb0405600)the National Natural Science Foundation of China(Grant Nos.61404091,61274113,61505144,51502203,and 51502204)the Natural Science Foundation of Tianjin City(Grant Nos.17JCYBJC16100 and 17JCZDJC31700)
文摘The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching behavior of a single ZnO film and bilayer HfOx/ZnO films as active layers for TRRAM devices was demonstrated. It was revealed that the bilayer TRRAM device with a 10-nm HfOx inserted layer had a more stable resistive switching behavior than other devices including the single layer device, as well as being forming free, and the transmittance was more than 80% in the visible region. For the HfOx/ZnO devices, the current conduction behavior was dominated by the space-charge-limited current mechanism in the low resistive state (LRS) and Schottky emission in the high resistive state (HRS), while the mechanism for single layer devices was controlled by ohmic conduction in the LRS and Poole-Frenkel emission in the HRS.
基金Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-1064)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61101055,61274113,and 11204212)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100032120029)Tianjin Natural Science Foundation of China (Grant No. 10SYSYJC27700)
文摘We demonstrate the polarization of resistive switching for a Cu/VOx/Cu memory cell.The switching behaviors of Cu/VOx/Cu cell are tested by using a semiconductor device analyzer(Agilent B1500A),and the relative micro-analysis of I-V characteristics of VOx/Cu is characterized by using a conductive atomic force microscope(CAFM).The I-V test results indicate that both the forming and the reversible resistive switching between low resistance state(LRS) and high resistance state(HRS) can be observed under either positive or negative sweep.The CAFM images for LRS and HRS directly exhibit evidence for the formation and rupture of filaments based on positive or negative voltage.The Cu/VOx/Cu sandwiched structure exhibits reversible resistive switching behavior and shows potential applications in the next generation of nonvolatile memory.
基金supported by the National Natural Science Foundation of China(Grant Nos.61664001,61574070,and 61306148)the Application Research and Development Plan of Gansu Academy of Sciences,China(Grant Nos.2015JK-11 and 2015JK-01)
文摘In this paper, the self-compliance bipolar resistive switching characteristic of an HfO-based memory device with Ag/HfO/Au structure for multilevel storage is investigated. By applying a positive voltage, the dual-step set processes corresponding to three stable resistance states are observed in the device. The multilevel switching characteristics can still be observed after 48 hours. In addition, the resistance values of all the three states show negligible degradation over 104 s,which may be useful for the applications in nonvolatile multilevel storage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272078 and 51332007)the State Key Program for Basic Research of China(Grant No 2015CB921202)+2 种基金the Guangdong Provincial Universities and Colleges Pearl River Scholar Funded Scheme,China(2014)the International Science&Technology Cooperation Platform Program of Guangzhou,China(Grant No.2014J4500016)the Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No.IRT1243)
文摘We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current-voltage(I-V) curve exhibits a well-established polarization-modulated memristor behavior. At low temperatures(〈 253 K), the I-V curve shows an open circuit voltage(OCV), which possibly originates from the dielectric relaxation effects, accompanied with a current hump due to the polarization reversal displacement current. While at relative higher temperatures(〉 253 K), the I-V behaviors are governed by both space-charge-limited conduction(SCLC) and Ohmic behavior. The polarization reversal is able to trigger the conduction switching from Ohmic to SCLC behavior, leading to the observed ferroelectric resistive switching. At a temperature of〉 298 K, there occurs a new resistive switching hysteresis at high bias voltages, which may be related to defect-mediated effects.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376106)
文摘First-principles calculations are used to investigate the migration path of Ag in the HfO2-based resistive random access memory(Re RAM). The formation energy calculation suggests that there are two different sites(site 1 and site 3) for the incorporation of Ag atoms into the HfO2 unit cell. Thermodynamic analysis shows that the motion of Ag atom in the HfO2 supercell appears to be anisotropic, which is due to the fact that the Ag atom at site 3 moves along the [1ˉ11] orientation,but the Ag atom at site 1 moves along the [001] orientation. The migration barriers of the Ag atoms hopping between neighboring unit cells are calculated along five different orientations. Difficulty in producing motion of the Ag atom varies with the migration barrier: this motion is minimized along [1ˉ11] orientation. Furthermore, The optimal circulation path for Ag migration within the HfO2 supercells is obtained, and is found to be approximately along the [1ˉ11] orientation.Therefore, it is proposed that the positive voltage should be applied along this orientation, the conduction filament may form more easily, which could improve the response time and reduce the power consumption in Re RAM applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574083 and 61434001)the National Basic Research Program of China(Grant No.2015CB352101)+4 种基金the National Key Research and Development Program of China(Grant No.2016YFA0200404)the National Key Project of Science and Technology of China(Grant No.2011ZX02403-002)Special Fund for Agroscientic Research in the Public Interest of China(Grant No.201303107)the Independent Research Program of Tsinghua University,China(Grant No.2014Z01006)Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen,China(Grant No.ZDSYS20140509172959969)
文摘Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits com- pared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can be divided into two categories: graphene RRAM and graphene oxide (GO)/reduced graphene oxide (rGO) RRAM. Using graphene as the electrode, GRRAM can own many good characteristics, such as low power consumption, higher density, transparency, SET voltage modulation, high uniformity, and so on. Graphene flakes sandwiched between two dielectric layers can lower the SET voltage and achieve multilevel switching. Moreover, the GRRAM with rGO and GO as the dielectric or electrode can be simply fabricated. Flexible and high performance RRAM and GO film can be modified by adding other materials layer or making a composite with polymer, nanoparticle, and 2D materials to further improve the performance. Above all, GRRAM shows huge potential to become the next generation memory.