To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power...To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.展开更多
The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method ...The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method can not coordinate the economic benefits of all the stakeholders from multiple regions of the transmission network,comprehensively.Hence,this study proposes a large-scale wind-power coordinated consumption strategy based on the Nash-Q method and establishes an economic dispatch model for interconnected systems considering the uncertainty of wind power,with optimal windpower consumption as the objective for redistributing the shared benefits between regions.Initially,based on the equivalent cost of the interests of stakeholders from different regions,the state decision models are respectively constructed,and the noncooperative game Nash equilibrium model is established.The Q-learning algorithm is then introduced for high-dimension decision variables in the game model,and the dispatch solution methods for interconnected systems are presented,integrating the noncooperative game Nash equilibrium and Q-learning algorithm.Finally,the proposed method is verified through the modified IEEE 39-bus interconnection system,and it is established that this method achieves reasonable distribution of interests between regions and promotes large-scale consumption of wind power.展开更多
This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluatio...This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluation indexes such as forecast deviation, simultaneity factor and anti-peak rate, also newly introduced evaluation indexes such as installed capacity, power adequacy and accommodation space. Bayesian weight modified method is used for solving index weights of 8 wind power accommodation indexes. The paper puts forward a comprehensive evaluation model of wind power accommodation ability based on improved radar chart method, and this model changes traditional radar chart fan-shaped sector to quadrilateral evaluation region, and increasing angle bisector can solve the problem that evaluation results are not unique. It constructs new area and perimeter vectors of radar chart, which make the evaluation results give consideration to level of aggregation and balance degree of evaluation objectives, and case study results show that this model has a certain practical value.展开更多
According to the demand of sustainable development and low-carbon electricity, it is important to develop clean resources and optimize scheduling generation mix. Firstly, a novel method for probabilistic production si...According to the demand of sustainable development and low-carbon electricity, it is important to develop clean resources and optimize scheduling generation mix. Firstly, a novel method for probabilistic production simulation for wind power integrated power systems is proposed based on universal generating function(UGF), which completes the production simulation with the chronological wind power and load demand. Secondly,multiple-period multiple-state wind power model and multiple-state thermal unit power model are adopted, and both thermal power and wind power are coordinately scheduled by the comprehensive cost including economic cost and environmental cost. Furthermore, the accommodation and curtailment of wind power is synergistically considered according to the available regulation capability of conventional generators in operation. Finally, the proposed method is verified and compared with conventional convolution method in the improved IEEE-RTS 79 system.展开更多
With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economi...With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economic operations of the two systems,this paper innovatively proposes a coordinated dispatch model of IEGS with LNG infrastructures and a freight railway network with LNG transport.First,an operational scheduling model of the railway network,considering energy consumption,is put forward for both LNG transmission and ordinary freight transport.Then,the coordinated dispatch problem of IEGS and the railway network is formulated into a mixed-integer linear programming model via the big M method and a modified incremental linearization approach.Finally,a bi-level optimization algorithm based on generalized benders decomposition(GBD)is presented to solve the coordinated dispatch problem due to the restrictions on exchanging private information.Case studies demonstrate the effectiveness of the proposed model and algorithm as well as the potential benefit for wind power accommodation.展开更多
基金National Natural Science Foundation of China(No.61663019)
文摘To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.
基金supported by the Fundamental Research Funds For the Central Universities(No.2017MS093)
文摘The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method can not coordinate the economic benefits of all the stakeholders from multiple regions of the transmission network,comprehensively.Hence,this study proposes a large-scale wind-power coordinated consumption strategy based on the Nash-Q method and establishes an economic dispatch model for interconnected systems considering the uncertainty of wind power,with optimal windpower consumption as the objective for redistributing the shared benefits between regions.Initially,based on the equivalent cost of the interests of stakeholders from different regions,the state decision models are respectively constructed,and the noncooperative game Nash equilibrium model is established.The Q-learning algorithm is then introduced for high-dimension decision variables in the game model,and the dispatch solution methods for interconnected systems are presented,integrating the noncooperative game Nash equilibrium and Q-learning algorithm.Finally,the proposed method is verified through the modified IEEE 39-bus interconnection system,and it is established that this method achieves reasonable distribution of interests between regions and promotes large-scale consumption of wind power.
基金supported by project of the National Key Research and Development Program Foundation of China(2016YFB0900100).
文摘This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluation indexes such as forecast deviation, simultaneity factor and anti-peak rate, also newly introduced evaluation indexes such as installed capacity, power adequacy and accommodation space. Bayesian weight modified method is used for solving index weights of 8 wind power accommodation indexes. The paper puts forward a comprehensive evaluation model of wind power accommodation ability based on improved radar chart method, and this model changes traditional radar chart fan-shaped sector to quadrilateral evaluation region, and increasing angle bisector can solve the problem that evaluation results are not unique. It constructs new area and perimeter vectors of radar chart, which make the evaluation results give consideration to level of aggregation and balance degree of evaluation objectives, and case study results show that this model has a certain practical value.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2012AA050208)the Program of the National Natural Science Foundation of China (No. 51177043)
文摘According to the demand of sustainable development and low-carbon electricity, it is important to develop clean resources and optimize scheduling generation mix. Firstly, a novel method for probabilistic production simulation for wind power integrated power systems is proposed based on universal generating function(UGF), which completes the production simulation with the chronological wind power and load demand. Secondly,multiple-period multiple-state wind power model and multiple-state thermal unit power model are adopted, and both thermal power and wind power are coordinately scheduled by the comprehensive cost including economic cost and environmental cost. Furthermore, the accommodation and curtailment of wind power is synergistically considered according to the available regulation capability of conventional generators in operation. Finally, the proposed method is verified and compared with conventional convolution method in the improved IEEE-RTS 79 system.
基金This work was supported by the National Key Research and Development Program of China(2016YFB0901900)the National Natural Science Foundation of China(51637008).
文摘With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economic operations of the two systems,this paper innovatively proposes a coordinated dispatch model of IEGS with LNG infrastructures and a freight railway network with LNG transport.First,an operational scheduling model of the railway network,considering energy consumption,is put forward for both LNG transmission and ordinary freight transport.Then,the coordinated dispatch problem of IEGS and the railway network is formulated into a mixed-integer linear programming model via the big M method and a modified incremental linearization approach.Finally,a bi-level optimization algorithm based on generalized benders decomposition(GBD)is presented to solve the coordinated dispatch problem due to the restrictions on exchanging private information.Case studies demonstrate the effectiveness of the proposed model and algorithm as well as the potential benefit for wind power accommodation.