This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussio...This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussion on the convergence rates of regular solutions.展开更多
In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operato...In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operator equations, and the fixed points of strong pseudocontractions. These results extend and improve Theorems 1-3 of Chidume and Osilike (Nonlinear Anal. TMA, 1999, 36(7): 863-872).展开更多
In the present paper, by virtue of new approch techniques, we obtain several mapping theorems involving compact perturbations of m—accretive operators.These results improve and extend the corresponding those obtained...In the present paper, by virtue of new approch techniques, we obtain several mapping theorems involving compact perturbations of m—accretive operators.These results improve and extend the corresponding those obtained by Kartsatos,Zhu, and Kartsatos and Mabry.展开更多
In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm i...In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm in a Banach space is also considered. The results extend some very recent theorems of W. Takahashi.展开更多
In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iter...In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).展开更多
Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process...Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.展开更多
Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n b...Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n be sequences in [0,1] satisfying:ⅰ) a n+b n+c n=a ′ n+b ′ n+c ′ n=1. n≥0; ⅱ) lim b n= lim b ′ n= lim c ′ n= 0; ⅲ)∑∞n=0b n=∞; ⅳ) c n=o(b n). For any given x 0,u 0,v 0∈K, define the Ishikawa type iterative sequence x n as follows: x n+1 =a nx n+b nTy n+c nu n, y n=a ′ nx n+b ′ nTx n+c ′ nv n (n≥0), where u n and v n are bounded sequences in K. Then x n converges strongly to the unique fixed point of T. Related result deals with the convergence of Ishikawa type iterative sequence to the solution of _strongly accretive operator equations.展开更多
Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive m...Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive mappings are discussed. The main results of this paper improve and extend the corresponding results obtained by Chang, Chidume, Deng, Ding, Tan-Xu and Osilike.展开更多
A more general form of modified Mann iterations which converges strongly to a zero point of an m-accretive operator is given. The work in this paper is an extension and complement of the corresponding result of Kim T....A more general form of modified Mann iterations which converges strongly to a zero point of an m-accretive operator is given. The work in this paper is an extension and complement of the corresponding result of Kim T.H. and Xu H.K in 2005展开更多
Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have...Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.展开更多
The Krasnoselskii-Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings,and it is well known that the clas-sic Krasnoselskii-Mann iteration is weakly convergent in Hilber...The Krasnoselskii-Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings,and it is well known that the clas-sic Krasnoselskii-Mann iteration is weakly convergent in Hilbert spaces.The weak convergence is also known even in Banach spaces.Recently,Kanzow and Shehu pro-posed a generalized Krasnoselskii-Mann-type iteration for nonexpansive mappings and established its convergence in Hilbert spaces.In this paper,we show that the generalized Krasnoselskii-Mann-type iteration proposed by Kanzow and Shehu also converges in Banach spaces.As applications,we proved the weak convergence of generalized proximal point algorithm in the uniformly convex Banach spaces.展开更多
For the general second order linear differential operator ■ with complex-valued distributional coefficients a_(jk), b_j, and c in an open set Ω ? R^n(n ≥ 1), we present conditions which ensure that-L^0 is accretive...For the general second order linear differential operator ■ with complex-valued distributional coefficients a_(jk), b_j, and c in an open set Ω ? R^n(n ≥ 1), we present conditions which ensure that-L^0 is accretive, i.e., Re<-L_0φ, φ >≥ 0 for all φ∈ C_0~∞(Ω).展开更多
文摘This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussion on the convergence rates of regular solutions.
基金NNSF of China(19801023)Teachiug and Research A ward Fund for Outstanding Young Teachers in Higher Edncation Institutions of MOE.Chinal.
文摘In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operator equations, and the fixed points of strong pseudocontractions. These results extend and improve Theorems 1-3 of Chidume and Osilike (Nonlinear Anal. TMA, 1999, 36(7): 863-872).
文摘In the present paper, by virtue of new approch techniques, we obtain several mapping theorems involving compact perturbations of m—accretive operators.These results improve and extend the corresponding those obtained by Kartsatos,Zhu, and Kartsatos and Mabry.
文摘In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm in a Banach space is also considered. The results extend some very recent theorems of W. Takahashi.
基金supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Educations of MOE,P.R.C.the National Natural Science Foundation of P.R.C.No.19801023
文摘In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).
文摘Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.
文摘Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n be sequences in [0,1] satisfying:ⅰ) a n+b n+c n=a ′ n+b ′ n+c ′ n=1. n≥0; ⅱ) lim b n= lim b ′ n= lim c ′ n= 0; ⅲ)∑∞n=0b n=∞; ⅳ) c n=o(b n). For any given x 0,u 0,v 0∈K, define the Ishikawa type iterative sequence x n as follows: x n+1 =a nx n+b nTy n+c nu n, y n=a ′ nx n+b ′ nTx n+c ′ nv n (n≥0), where u n and v n are bounded sequences in K. Then x n converges strongly to the unique fixed point of T. Related result deals with the convergence of Ishikawa type iterative sequence to the solution of _strongly accretive operator equations.
文摘Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive mappings are discussed. The main results of this paper improve and extend the corresponding results obtained by Chang, Chidume, Deng, Ding, Tan-Xu and Osilike.
基金Foundation item: the National Natural Science Foundation of China (No. 10771050).
文摘A more general form of modified Mann iterations which converges strongly to a zero point of an m-accretive operator is given. The work in this paper is an extension and complement of the corresponding result of Kim T.H. and Xu H.K in 2005
文摘Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.
基金supported by the Students Innovation and Entrepreneurship Training Program Foundation of China West Normal University(No.201810638047)supported by the National Natural Science Foundation of China(Nos.11571178 and 11801455)Fundamental Research Funds of China West Normal University(Nos.17E084 and 18B031).
文摘The Krasnoselskii-Mann iteration plays an important role in the approximation of fixed points of nonexpansive mappings,and it is well known that the clas-sic Krasnoselskii-Mann iteration is weakly convergent in Hilbert spaces.The weak convergence is also known even in Banach spaces.Recently,Kanzow and Shehu pro-posed a generalized Krasnoselskii-Mann-type iteration for nonexpansive mappings and established its convergence in Hilbert spaces.In this paper,we show that the generalized Krasnoselskii-Mann-type iteration proposed by Kanzow and Shehu also converges in Banach spaces.As applications,we proved the weak convergence of generalized proximal point algorithm in the uniformly convex Banach spaces.
文摘For the general second order linear differential operator ■ with complex-valued distributional coefficients a_(jk), b_j, and c in an open set Ω ? R^n(n ≥ 1), we present conditions which ensure that-L^0 is accretive, i.e., Re<-L_0φ, φ >≥ 0 for all φ∈ C_0~∞(Ω).