This paper presents the recent research on the study of the strategies for the flexible operation of the thermal power plant to meet the requirement of load balance. The study aimed to investigate the feasibility of b...This paper presents the recent research on the study of the strategies for the flexible operation of the thermal power plant to meet the requirement of load balance. The study aimed to investigate the feasibility of bringing the High Temperature Thermal Energy Storage(HTTES) to the thermal power plant steam-water cycle, to identify the suitable HTTES in the cold(hot) section of the reheating pipeline and to test the efficiency of the HTTES integration to increase the flexibility of peak shaving and energy efficiency via thermal power plant with HTTTES modelling and simulation. Thermoflex was adopted to perform the simulation and a 300 MW subcritical coal-fired power plant model was implemented onto the software platform. The simulation results show that it is feasible to extract steam from the steam turbine to charge the HTTES, and to discharge the stored thermal energy back to the power generation process, and to analyse the improved capability of the plant flexible operation with HTTES. Then the study was extended to analyse the effect of thermal energy temperature, the opening of the regulating valve, and the pipeline pressure loss aspects on thermal efficiency of the whole plant. The study is beneficial to achieve more economic operation of the thermal power plant with HTTES integration. It is concluded that the introduction of the HTTES can improve the consumption of wind power, and these ideas and methods for solving the energy consumption of the renewable energy and reducing the peak energy consumption are provided.展开更多
文摘This paper presents the recent research on the study of the strategies for the flexible operation of the thermal power plant to meet the requirement of load balance. The study aimed to investigate the feasibility of bringing the High Temperature Thermal Energy Storage(HTTES) to the thermal power plant steam-water cycle, to identify the suitable HTTES in the cold(hot) section of the reheating pipeline and to test the efficiency of the HTTES integration to increase the flexibility of peak shaving and energy efficiency via thermal power plant with HTTTES modelling and simulation. Thermoflex was adopted to perform the simulation and a 300 MW subcritical coal-fired power plant model was implemented onto the software platform. The simulation results show that it is feasible to extract steam from the steam turbine to charge the HTTES, and to discharge the stored thermal energy back to the power generation process, and to analyse the improved capability of the plant flexible operation with HTTES. Then the study was extended to analyse the effect of thermal energy temperature, the opening of the regulating valve, and the pipeline pressure loss aspects on thermal efficiency of the whole plant. The study is beneficial to achieve more economic operation of the thermal power plant with HTTES integration. It is concluded that the introduction of the HTTES can improve the consumption of wind power, and these ideas and methods for solving the energy consumption of the renewable energy and reducing the peak energy consumption are provided.