期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative prediction model for the depth limit of oil accumulation in the deep carbonate rocks:A case study of Lower Ordovician in Tazhong area of Tarim Basin
1
作者 Wen-Yang Wang Xiong-Qi Pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Fu-Jie Jiang Ying Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期115-124,共10页
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b... With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling. 展开更多
关键词 Deep layer Tarim Basin Hydrocarbon accumulation depth limit of oil accumulation Prediction model
下载PDF
A novel method for quantitatively identifying driving forces and evaluating their contributions to oil and gas accumulation
2
作者 Bo Pang Xiongqi Pang +8 位作者 Caijun Li Zhangxing Chen Huiyi Xiao Suyun Hu Siyu Zhang Lei Wang Yaoxi Sun Min Li Shasha Hui 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第4期28-40,共13页
Different driving forces govern the formation of distinct types of oil and gas accumulation and yield diverse oil and gas distributions.Complex oil and gas reservoirs in basins are commonly formed by the combination o... Different driving forces govern the formation of distinct types of oil and gas accumulation and yield diverse oil and gas distributions.Complex oil and gas reservoirs in basins are commonly formed by the combination of multiple forces.It is very difficult but essential to identify driving forces and evaluate their contributions in predicting the type and distribution of oil and gas reservoirs.In this study,a novel method is proposed to identify driving forces and evaluate their contribution based on the critical conditions of porosity and permeability corresponding to buoyancy-driven hydrocarbon accumulation depth(BHAD).The application of this method to the Nanpu Sag of the Bohai Bay Basin shows that all oil and gas accumulations in the reservoirs are jointly formed by four driving forces:buoyance(Ⅰ),non-buoyance(Ⅱ),tectonic stress(Ⅲ1)and geofluid activity(Ⅲ2).Their contributions to all proven reserves are approxi-mately 63.8%,16.2%,2.9%,and 17.0%,respectively.The contribution of the driving forces is related to the depth,distance to faults and unconformity surfaces.Buoyancy dominates the formation of conven-tional reservoirs above BHAD,non-buoyant dominate the formation of unconventional reservoirs below BHAD,tectonic stress dominates the formation of fractured reservoirs within 300 m of a fault,and geoflu-ids activity dominates the formation of vuggy reservoirs within 100 m of an unconformity surface. 展开更多
关键词 Driving forces Dynamic mechanisms Buoyancy-driven hydrocarbon accumulation depth Unconventional oil and gas Resources evaluation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部