Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyc...Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.展开更多
Objective:To investigate the effect of isoimperatorin on histopathological and biochemical changes in acetic acid-induced colitis rats.Methods:Colitis was induced by intracolonic administration of acetic acid solution...Objective:To investigate the effect of isoimperatorin on histopathological and biochemical changes in acetic acid-induced colitis rats.Methods:Colitis was induced by intracolonic administration of acetic acid solution(4%v/v)in rats.Rats were divided into six groups including the sham group,the negative control group,the dexamethasone-treated group,and the groups treated with isoimperatorin(0.1,1,and 10 mg/kg/d by gavage).The treatments were administered for three days and then colonic status was assessed by macroscopic,histopathological,and biochemical analyses.Results:Isoimperatorin significantly alleviated colonic damage in a dose-dependent manner and improved histological changes in rats with acetic acid-induced colitis.It also significantly reduced myeloperoxidase,TNF-α,IL-1β,and malodialdehyde levels.Conclusions:Isoimperatorin alleviates acetic acid-induced colitis in rats and may be a potential therapeutic agent for the treatment of colitis.展开更多
Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as...Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as two comparative catalysts,Ni/Al_(2)O_(3) and Ni/SiO_(2),with low nickel loading(2%(mass))was conducted to probe involvement of the varied carriers in the steam reforming.The results indicated that the Ni/biochar performed excellent catalytic activity than Ni/SiO_(2) and Ni/Al_(2)O_(3),as the biochar carrier facilitated quick conversion of the -OH from dissociation of steam to gasify the oxygen-rich carbonaceous intermediates like C=O and C-O-C,resulting in low coverage while high exposure of nickel species for maintaining the superior catalytic performance.In converse,strong adsorption of aliphatic intermediates over Ni/Al_(2)O_(3) and Ni/SiO_(2) induced serious coking with polymeric coke as the main type(21.5%and 32.1%,respectively),which was significantly higher than that over Ni/biochar(3.9%).The coke over Ni/biochar was mainly aromatic or catalytic type with nanotube morphology and high crystallinity.The high resistivity of Ni/biochar towards coking was due to the balance between formation of coke and gasification of coke and partially biochar with steam,which created developed mesopores in spent Ni/biochar while the coke blocked pores in Ni/Al_(2)O_(3) and Ni/SiO_(2) catalysts.展开更多
BACKGROUND Conventional magnifying endoscopy with narrow-band imaging(NBI)observation of the gastric body mucosa shows dominant patterns in relation to the regular arrangement of collecting venules,subepithelial capil...BACKGROUND Conventional magnifying endoscopy with narrow-band imaging(NBI)observation of the gastric body mucosa shows dominant patterns in relation to the regular arrangement of collecting venules,subepithelial capillary network,and gastric pits.AIM To evaluate the effectiveness of a new one-dual(near)focus,NBI mode in the assessment of the microscopic features of gastric body mucosa compared to conventional magnification.METHODS During 2021 and 2022,68 patients underwent proximal gastrointestinal endoscopy using magnification endoscopic modalities subsequently applying acetic acid(AA).The GIF-190HQ series NBI system with dual focus capability was used for the investigation of gastric mucosa.At the time of the endoscopy,the gastric body mucosa of all enrolled patients was photographed using the white light endoscopy(WLE),near focus(NF),NF-NBI,AA-NF,and AA-NF-NBI modes.RESULTS The WLE,NF and NF-NBI endoscopic modes for all patients(204 images)were classified in the same order into three groups.Two images from each patient for the AA-NF and AA-NF-NBI endoscopic modes were classified in the same order.According to all three observers who completed the work independently,NF magnification was significantly superior to WLE(P<0.01),and the NF-NBI mode was significantly superior to NF magnification(P<0.01).After applying AA,the three observers confirmed that AA-NF-NBI was significantly superior to AA-NF(P<0.01).Interobserver kappa values for WLE were 0.609,0.704,and 0.598,respectively and were 0.600,0.721,and 0.637,respectively,for NF magnification.For the NF-NBI mode,the values were 0.378,0.471,and 0.553,respectively.For AA-NF,they were 0.453,0.603,and 0.480,respectively,and for AA-NF-NBI,they were 0.643,0.506,and 0.354,respectively.CONCLUSION When investigating gastric mucosa in microscopic detail,NF-NBI was the most powerful endoscopic mode for assessing regular arrangement of collecting venules,subepithelial capillary network,and gastric pits among the five endoscopic modalities investigated in this study.AA-NF-NBI was the most powerful endoscopic mode for analyzing crypt opening and intervening part.展开更多
Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environ...Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.展开更多
It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and co...It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and countermeasures were needed. Therefore, we studied the copper corrosion caused by acetic acid. The present work investigated the relationship between the corrosion form of copper and acetic acid concentration using phosphorous-deoxidized copper, and reported that hemispherical corrosion was observed at acetic acid concentrations of 0.01 to 1 vol.% (0.002 to 0.2 mol·L<sup>-1</sup>) in the immersion test. In this study, the effects of acetic acid and phosphate on copper corrosion were examined using oxygen-free copper in immersion tests. The results suggested that different concentrations of phosphate in acetic acid solutions and the presence or absence of acetic acid and phosphate affected the corrosion of copper, resulting in different corrosion forms and corrosion progress.展开更多
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against...BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.展开更多
As an important organic,isobutyl acetate(IbAc)has been widely used in industries because of its good biodegradability,low surface tension,and other properties.The industrial production of IbAc is usually catalyzed by ...As an important organic,isobutyl acetate(IbAc)has been widely used in industries because of its good biodegradability,low surface tension,and other properties.The industrial production of IbAc is usually catalyzed by sulfuric acid.However,the use of sulfuric acid has the drawbacks of causing considerable corrosion to equipment and being difficult to be separated.In this work,n-sulfopropyl-3-methylpyridinium trifluoromethanesulfonate([HSO_(3)-PMPY][CF_(3)SO_(3)])Bronsted acidic ionic liquid(BAIL)was used as the catalyst and the catalytic activity,solubility,and corrosiveness were evaluated for the esterification of acetic acid with isobutanol.The reaction kinetics and chemical equilibrium were systemically studied.Compared to conventional acid catalysts,[HSO_(3)-PMPY][CF_(3)SO_(3)]showed higher catalytic activity,more excellent reusability,more favorable phase separation,and non-corrosiveness.Three kinetic equations based on ideal homogeneous(IH),non-ideal homogeneous(NIH),and modified nonideal homogeneous(NIH-M)models were established and correlated with the experimental data to determine the parameters and errors.The NIH-M model exhibited the best agreement with the experimental data,owing to its prediction considering the non-ideality and the self-catalysis effect of acetic acid in this system.Besides,the error of NIH-M model fitting was mainly caused by the difference in solubility between[HSO_(3)-PMPY][CF_(3)SO_(3)]with reactants and products in the reaction system.Furthermore,the applicability of the NIH-M model was investigated by simulating the esterification of acetic acid with three short-chain alcohols(ethanol,n-butanol,and isobutanol)catalyzed by BAILs.The NIH-M model displayed an acceptable simulation for this type of acetic acid esterification reaction catalyzed by BAILs at different ranges of the BAILs concentration and temperature.This study confirmed the industrial prospects of[HSO_(3)-PMPY][CF_(3)SO_(3)]in isobutyl acetate production and the applicability of the NIH-M kinetic model in the esterification of acetic acid.展开更多
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large...Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.展开更多
BACKGROUND Atractylodes japonica Koidz.ex Kitam.(A.japonica,Chinese name:Guan-Cangzhu,Japanese name:Byaku-jutsu),a perennial herb,which is mainly distributed in northeast area of China,it’s often used to treat digest...BACKGROUND Atractylodes japonica Koidz.ex Kitam.(A.japonica,Chinese name:Guan-Cangzhu,Japanese name:Byaku-jutsu),a perennial herb,which is mainly distributed in northeast area of China,it’s often used to treat digestive system diseases such as gastric ulcer(GU).However,the mechanism of its potential protective effects against GU remains unclear.AIM To investigate the protective effects of A.japonica on acetic acid-induced GU rats.METHODS The chemical constituents of A.japonica were determined by ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS)analysis.The rat model of GU was simulated by acetic acid method.The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain,the levels of epidermal growth factor(EGF),EGF receptor(EGFR),nuclear factor kappa-B(NF-κB),interleukin-1β(IL-1β),IL-10,Na^(+)-K^(+)-ATPase(NKA)in serum and gastric tissues were determined by enzyme-linked immunosorbent assay,and the mRNA expressions of EGFR,NF-κBp65,IkappaBalpha(IκBα)and Zonula Occludens-1(ZO-1)in gastric tissues were determined by real-time reverse transcription polymerase chain reaction,and the efficacy was observed.Then,plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers,metabolic pathways and to explore the possible mechani-sms.RESULTS 48 chemical constituents were identified.Many of them have strong pharmacological activity,the results also revealed that A.japonica significantly improved the pathological damage of gastric tissues,increased the expression levels of IL-10,IκBαrelated to anti-inflammatory factors,decreased the expression levels of IL-1β,NF-κB,NF-κBp65,related to proinflammatory factors,restored the levels of factors about EGF,EGFR,ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism.Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways.CONCLUSION These findings contribute to the understanding of the potential mechanism of A.japonica to improve acetic acidinduced GU,and will be of great importance for the development and clinical application of natural drugs related to A.japonica.展开更多
Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the hos...Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
The sergestid shrimp Acetes vulgaris has long been an important fishery species in estuaries and coastal waters along the Pang-Rad River, Rayong province, Thailand. In nature, this shrimp feeds on a wide range of food...The sergestid shrimp Acetes vulgaris has long been an important fishery species in estuaries and coastal waters along the Pang-Rad River, Rayong province, Thailand. In nature, this shrimp feeds on a wide range of food items, such as phytoplankton, zooplankton, algae, plant matter, debris, sand, and mud. The objective of this study was to compare different feeds on growth and survival of A. vulgaris reared in fiberglass tanks containing 70 m<sup>3</sup> of seawater salinity 25 ppt over a period of 70 days. Individual shrimps were fed with four different types of feeds i.e., newly hatched Artemia (Ar), rotifer (Ro), newly hatched Artemia + rotifer (ArRo) and shrimp larvae commercial feed (SF). Results suggested that specific growth rates (both for body weight and body length) of shrimps reared with SF were not significantly different with treatment feed with Ar, ArRo and Ro (p ≥ 0.05). The survival rate of A. vulgaris did not vary significantly (p ≥ 0.05) among the Ar, Ro and ArRo treatments. However, the highest survival rate of shrimp (81.78% ± 3.08%) was observed in SF treatment and the percentage of survival rate was significantly different with treatment feed with Ar, Ro and ArRo (p ≤ 0.05). The findings reflected the ability of Acetes shrimps to consume diverse food types including both live feed and pelleted feed. Insights obtained from this research suggested that artificial feed can be as efficient as live feeds. This new knowledge is a needed addition to a currently lacking knowledge base for aquaculture of this Acetes species.展开更多
In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosenso...In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ...The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.展开更多
Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinom...Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinoma(G1 EAC)and the recurrence rate after treatment.Methods Sixty patients(aged 20-42 years)with AEH and/or grade 1 EAC limited to the endometrium were enrolled prospectively and randomized into two groups(n=30)to receive oral MA treatment at the daily dose of 160 mg(control)or MA plus oral metformin(850 mg,twice a day)for at least 6 months.The treatment could extend to 12 months until a complete response(CR)was achieved,and follow-up hysteroscopy and curettage were performed every 3 months.For all the patients who achieved CR,endometrial expressions of IGFBP-rP1,p-Akt and p-AMPK were detected immunohistochemically.Results A total of 58 patients completed the treatment.After 9 months of treatment,23(76.7%)patients in the combined treatment group and 20(71.4%)in the control group achieved CR;two patients in the control group achieved CR after converting to the combined treatment.The recurrence rate did not differ significantly between the control group and combined treatment group(30.0%vs 22.7%,P>0.05).Ten(35.7%)patients in the control group experienced significant weight gain of 5.7±6.1 kg,while none of the patients receiving the combined treatment exhibited significant body weight changes.Compared with the control group,the patients receiving the combined treatment showed enhanced endometrial expressions of IGFBP-rP1 and p-AMPK with lowered p-Akt expression.Conclusion Metformin combined with MA may provide an effective option for fertility-sparing treatment of AEH and grade 1 stage IA EAC,and the clinical benefits of metformin for controlling MA-induced weight gain and promoting endometrial expressions of IGFBP-rP1 and p-AMPK while inhibiting p-Akt expression warrants further study.展开更多
Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular inte...Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular interactions,and play an important role in the melting processing of CA.In recent years,environmentally friendly plasticizers that are natural,non-toxic,odorless,low dissolution,and low migration have received increas-ing attention in plastic processing.This article reviews the research progress of environ-mentally friendly plasticizers such as natural plasticizers,ionic liquid plasticizers,citrate plasticizers,and polyethylene glycol plasticizers in the processing of cellulose acetate,and looks forward to the application prospects of environmentally friendly plasticizers.展开更多
Prostate cancer is a common malignant tumor of the urinary system in men,and the incidence and detection rate of prostate cancer have been rising significantly in recent years.Androgens play an important role in the o...Prostate cancer is a common malignant tumor of the urinary system in men,and the incidence and detection rate of prostate cancer have been rising significantly in recent years.Androgens play an important role in the occurrence and development of prostate cancer,so hormone deprivation therapy has become an essential means of prostate cancer treatment.Abiraterone acetate is a therapeutic agent for prostate cancer by inhibiting the enzyme activity of CYP17,thereby blocking androgen biosynthesis.In this paper,we present a review of the current mechanism of action of abiraterone acetate for prostate cancer treatment,research progress,and its side effects and limitations.It is expected to provide help for further research on the treatment of prostate cancer.展开更多
基金supported by the National Key Research and Development Program of China(2021YFC2101303)the National Natural Science Foundation of China(U22A20424 and 22378048)+6 种基金the Major Scientific and Technological Projects of Sinopecthe Dalian Technology Talents Project for Distinguished Young Scholars(2021RJ03)the Yunnan Provincial Rural Energy Engineering Key Laboratory(2022KF003)the National Natural Science Foundation of Liaoning Province(2023-MS-110)the Liaoning Revitalization Talents Program(XLYC2202049)the Fundamental Research Funds for the Central Universities(DUT22LK22)the CAS Key Laboratory of Renewable Energy,Guangzhou Institute of Energy Conversion(E229kf0401)。
文摘Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery.
文摘Objective:To investigate the effect of isoimperatorin on histopathological and biochemical changes in acetic acid-induced colitis rats.Methods:Colitis was induced by intracolonic administration of acetic acid solution(4%v/v)in rats.Rats were divided into six groups including the sham group,the negative control group,the dexamethasone-treated group,and the groups treated with isoimperatorin(0.1,1,and 10 mg/kg/d by gavage).The treatments were administered for three days and then colonic status was assessed by macroscopic,histopathological,and biochemical analyses.Results:Isoimperatorin significantly alleviated colonic damage in a dose-dependent manner and improved histological changes in rats with acetic acid-induced colitis.It also significantly reduced myeloperoxidase,TNF-α,IL-1β,and malodialdehyde levels.Conclusions:Isoimperatorin alleviates acetic acid-induced colitis in rats and may be a potential therapeutic agent for the treatment of colitis.
基金supported by National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of Shandong Province Government,the Agricultural Innovation Program of Shandong Province(SD2019NJ015)+1 种基金the Research and Development program of Shandong Basan Graphite New Material Plant,National Natural Science Foundation of China(52076097)Key projects for inter-governmental cooperation in international science,technology and innovation(2018YFE0127500).
文摘Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as two comparative catalysts,Ni/Al_(2)O_(3) and Ni/SiO_(2),with low nickel loading(2%(mass))was conducted to probe involvement of the varied carriers in the steam reforming.The results indicated that the Ni/biochar performed excellent catalytic activity than Ni/SiO_(2) and Ni/Al_(2)O_(3),as the biochar carrier facilitated quick conversion of the -OH from dissociation of steam to gasify the oxygen-rich carbonaceous intermediates like C=O and C-O-C,resulting in low coverage while high exposure of nickel species for maintaining the superior catalytic performance.In converse,strong adsorption of aliphatic intermediates over Ni/Al_(2)O_(3) and Ni/SiO_(2) induced serious coking with polymeric coke as the main type(21.5%and 32.1%,respectively),which was significantly higher than that over Ni/biochar(3.9%).The coke over Ni/biochar was mainly aromatic or catalytic type with nanotube morphology and high crystallinity.The high resistivity of Ni/biochar towards coking was due to the balance between formation of coke and gasification of coke and partially biochar with steam,which created developed mesopores in spent Ni/biochar while the coke blocked pores in Ni/Al_(2)O_(3) and Ni/SiO_(2) catalysts.
文摘BACKGROUND Conventional magnifying endoscopy with narrow-band imaging(NBI)observation of the gastric body mucosa shows dominant patterns in relation to the regular arrangement of collecting venules,subepithelial capillary network,and gastric pits.AIM To evaluate the effectiveness of a new one-dual(near)focus,NBI mode in the assessment of the microscopic features of gastric body mucosa compared to conventional magnification.METHODS During 2021 and 2022,68 patients underwent proximal gastrointestinal endoscopy using magnification endoscopic modalities subsequently applying acetic acid(AA).The GIF-190HQ series NBI system with dual focus capability was used for the investigation of gastric mucosa.At the time of the endoscopy,the gastric body mucosa of all enrolled patients was photographed using the white light endoscopy(WLE),near focus(NF),NF-NBI,AA-NF,and AA-NF-NBI modes.RESULTS The WLE,NF and NF-NBI endoscopic modes for all patients(204 images)were classified in the same order into three groups.Two images from each patient for the AA-NF and AA-NF-NBI endoscopic modes were classified in the same order.According to all three observers who completed the work independently,NF magnification was significantly superior to WLE(P<0.01),and the NF-NBI mode was significantly superior to NF magnification(P<0.01).After applying AA,the three observers confirmed that AA-NF-NBI was significantly superior to AA-NF(P<0.01).Interobserver kappa values for WLE were 0.609,0.704,and 0.598,respectively and were 0.600,0.721,and 0.637,respectively,for NF magnification.For the NF-NBI mode,the values were 0.378,0.471,and 0.553,respectively.For AA-NF,they were 0.453,0.603,and 0.480,respectively,and for AA-NF-NBI,they were 0.643,0.506,and 0.354,respectively.CONCLUSION When investigating gastric mucosa in microscopic detail,NF-NBI was the most powerful endoscopic mode for assessing regular arrangement of collecting venules,subepithelial capillary network,and gastric pits among the five endoscopic modalities investigated in this study.AA-NF-NBI was the most powerful endoscopic mode for analyzing crypt opening and intervening part.
基金the China Scholarship Council(CSC)for funding(no.201806310116)。
文摘Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.
文摘It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and countermeasures were needed. Therefore, we studied the copper corrosion caused by acetic acid. The present work investigated the relationship between the corrosion form of copper and acetic acid concentration using phosphorous-deoxidized copper, and reported that hemispherical corrosion was observed at acetic acid concentrations of 0.01 to 1 vol.% (0.002 to 0.2 mol·L<sup>-1</sup>) in the immersion test. In this study, the effects of acetic acid and phosphate on copper corrosion were examined using oxygen-free copper in immersion tests. The results suggested that different concentrations of phosphate in acetic acid solutions and the presence or absence of acetic acid and phosphate affected the corrosion of copper, resulting in different corrosion forms and corrosion progress.
文摘BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.
基金supported by the National Natural Science Foundation of China(22168004)the Natural Science Foundation of Guangxi Province(2017GXNSFDA198047)the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2019Z010,2021Z013)。
文摘As an important organic,isobutyl acetate(IbAc)has been widely used in industries because of its good biodegradability,low surface tension,and other properties.The industrial production of IbAc is usually catalyzed by sulfuric acid.However,the use of sulfuric acid has the drawbacks of causing considerable corrosion to equipment and being difficult to be separated.In this work,n-sulfopropyl-3-methylpyridinium trifluoromethanesulfonate([HSO_(3)-PMPY][CF_(3)SO_(3)])Bronsted acidic ionic liquid(BAIL)was used as the catalyst and the catalytic activity,solubility,and corrosiveness were evaluated for the esterification of acetic acid with isobutanol.The reaction kinetics and chemical equilibrium were systemically studied.Compared to conventional acid catalysts,[HSO_(3)-PMPY][CF_(3)SO_(3)]showed higher catalytic activity,more excellent reusability,more favorable phase separation,and non-corrosiveness.Three kinetic equations based on ideal homogeneous(IH),non-ideal homogeneous(NIH),and modified nonideal homogeneous(NIH-M)models were established and correlated with the experimental data to determine the parameters and errors.The NIH-M model exhibited the best agreement with the experimental data,owing to its prediction considering the non-ideality and the self-catalysis effect of acetic acid in this system.Besides,the error of NIH-M model fitting was mainly caused by the difference in solubility between[HSO_(3)-PMPY][CF_(3)SO_(3)]with reactants and products in the reaction system.Furthermore,the applicability of the NIH-M model was investigated by simulating the esterification of acetic acid with three short-chain alcohols(ethanol,n-butanol,and isobutanol)catalyzed by BAILs.The NIH-M model displayed an acceptable simulation for this type of acetic acid esterification reaction catalyzed by BAILs at different ranges of the BAILs concentration and temperature.This study confirmed the industrial prospects of[HSO_(3)-PMPY][CF_(3)SO_(3)]in isobutyl acetate production and the applicability of the NIH-M kinetic model in the esterification of acetic acid.
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
基金supported by the Double Support Project (035–2221993229)。
文摘Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
基金Supported by National Natural Science Foundation of China,No.81973478Liaoning Revitalization Talents Program,China,No.XLYC2002004Natural Science Foundation of Liaoning Province,China,No.2019-ZD-0443.
文摘BACKGROUND Atractylodes japonica Koidz.ex Kitam.(A.japonica,Chinese name:Guan-Cangzhu,Japanese name:Byaku-jutsu),a perennial herb,which is mainly distributed in northeast area of China,it’s often used to treat digestive system diseases such as gastric ulcer(GU).However,the mechanism of its potential protective effects against GU remains unclear.AIM To investigate the protective effects of A.japonica on acetic acid-induced GU rats.METHODS The chemical constituents of A.japonica were determined by ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS)analysis.The rat model of GU was simulated by acetic acid method.The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain,the levels of epidermal growth factor(EGF),EGF receptor(EGFR),nuclear factor kappa-B(NF-κB),interleukin-1β(IL-1β),IL-10,Na^(+)-K^(+)-ATPase(NKA)in serum and gastric tissues were determined by enzyme-linked immunosorbent assay,and the mRNA expressions of EGFR,NF-κBp65,IkappaBalpha(IκBα)and Zonula Occludens-1(ZO-1)in gastric tissues were determined by real-time reverse transcription polymerase chain reaction,and the efficacy was observed.Then,plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers,metabolic pathways and to explore the possible mechani-sms.RESULTS 48 chemical constituents were identified.Many of them have strong pharmacological activity,the results also revealed that A.japonica significantly improved the pathological damage of gastric tissues,increased the expression levels of IL-10,IκBαrelated to anti-inflammatory factors,decreased the expression levels of IL-1β,NF-κB,NF-κBp65,related to proinflammatory factors,restored the levels of factors about EGF,EGFR,ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism.Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways.CONCLUSION These findings contribute to the understanding of the potential mechanism of A.japonica to improve acetic acidinduced GU,and will be of great importance for the development and clinical application of natural drugs related to A.japonica.
基金supported by the Provincial Science and Technology Innovative Program for Carbon Peak and Carbon neutrality of Jiangsu of China (BE2022422)National Natural Science Foundation of China (32373145)。
文摘Background Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal(CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain(YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia(Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated.Results A total of 270 Nile tilapia(2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON(control diet), GOS(control diet containing 300 mg/kg gossypol) and GP(control diet containing 300 mg/kg gossypol and 10^(8) colony-forming unit(CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and si RNA interference experiments demonstrated that NOD-like receptors(NLR) family caspase recruitment domain(CARD) domain containing 3(Nlrc3) inhibition might promote intestinal stem cell(ISC) proliferation, as well as maintaining gut barrier integrity. 16S r RNA sequencing and gas chromatography-mass spectrometry(GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model.Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
文摘The sergestid shrimp Acetes vulgaris has long been an important fishery species in estuaries and coastal waters along the Pang-Rad River, Rayong province, Thailand. In nature, this shrimp feeds on a wide range of food items, such as phytoplankton, zooplankton, algae, plant matter, debris, sand, and mud. The objective of this study was to compare different feeds on growth and survival of A. vulgaris reared in fiberglass tanks containing 70 m<sup>3</sup> of seawater salinity 25 ppt over a period of 70 days. Individual shrimps were fed with four different types of feeds i.e., newly hatched Artemia (Ar), rotifer (Ro), newly hatched Artemia + rotifer (ArRo) and shrimp larvae commercial feed (SF). Results suggested that specific growth rates (both for body weight and body length) of shrimps reared with SF were not significantly different with treatment feed with Ar, ArRo and Ro (p ≥ 0.05). The survival rate of A. vulgaris did not vary significantly (p ≥ 0.05) among the Ar, Ro and ArRo treatments. However, the highest survival rate of shrimp (81.78% ± 3.08%) was observed in SF treatment and the percentage of survival rate was significantly different with treatment feed with Ar, Ro and ArRo (p ≤ 0.05). The findings reflected the ability of Acetes shrimps to consume diverse food types including both live feed and pelleted feed. Insights obtained from this research suggested that artificial feed can be as efficient as live feeds. This new knowledge is a needed addition to a currently lacking knowledge base for aquaculture of this Acetes species.
文摘In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
文摘The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.
文摘Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinoma(G1 EAC)and the recurrence rate after treatment.Methods Sixty patients(aged 20-42 years)with AEH and/or grade 1 EAC limited to the endometrium were enrolled prospectively and randomized into two groups(n=30)to receive oral MA treatment at the daily dose of 160 mg(control)or MA plus oral metformin(850 mg,twice a day)for at least 6 months.The treatment could extend to 12 months until a complete response(CR)was achieved,and follow-up hysteroscopy and curettage were performed every 3 months.For all the patients who achieved CR,endometrial expressions of IGFBP-rP1,p-Akt and p-AMPK were detected immunohistochemically.Results A total of 58 patients completed the treatment.After 9 months of treatment,23(76.7%)patients in the combined treatment group and 20(71.4%)in the control group achieved CR;two patients in the control group achieved CR after converting to the combined treatment.The recurrence rate did not differ significantly between the control group and combined treatment group(30.0%vs 22.7%,P>0.05).Ten(35.7%)patients in the control group experienced significant weight gain of 5.7±6.1 kg,while none of the patients receiving the combined treatment exhibited significant body weight changes.Compared with the control group,the patients receiving the combined treatment showed enhanced endometrial expressions of IGFBP-rP1 and p-AMPK with lowered p-Akt expression.Conclusion Metformin combined with MA may provide an effective option for fertility-sparing treatment of AEH and grade 1 stage IA EAC,and the clinical benefits of metformin for controlling MA-induced weight gain and promoting endometrial expressions of IGFBP-rP1 and p-AMPK while inhibiting p-Akt expression warrants further study.
文摘Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular interactions,and play an important role in the melting processing of CA.In recent years,environmentally friendly plasticizers that are natural,non-toxic,odorless,low dissolution,and low migration have received increas-ing attention in plastic processing.This article reviews the research progress of environ-mentally friendly plasticizers such as natural plasticizers,ionic liquid plasticizers,citrate plasticizers,and polyethylene glycol plasticizers in the processing of cellulose acetate,and looks forward to the application prospects of environmentally friendly plasticizers.
文摘Prostate cancer is a common malignant tumor of the urinary system in men,and the incidence and detection rate of prostate cancer have been rising significantly in recent years.Androgens play an important role in the occurrence and development of prostate cancer,so hormone deprivation therapy has become an essential means of prostate cancer treatment.Abiraterone acetate is a therapeutic agent for prostate cancer by inhibiting the enzyme activity of CYP17,thereby blocking androgen biosynthesis.In this paper,we present a review of the current mechanism of action of abiraterone acetate for prostate cancer treatment,research progress,and its side effects and limitations.It is expected to provide help for further research on the treatment of prostate cancer.