Herbicide resistance in crop plants is valuable for integrated weed management in agriculture. Herbicide resistant rice, in particular, is important to management of weedy rice, a close relative of cultivated rice and...Herbicide resistance in crop plants is valuable for integrated weed management in agriculture. Herbicide resistant rice, in particular, is important to management of weedy rice, a close relative of cultivated rice and a noxious weed prevalent in rice fields that remains challenging to farmers worldwide. Herbicide resistant plants can be obtained through transgenic approach or by mutagenesis of regular plant and screening of mutants with elevated resistance to herbicide. In this study, we conducted ethyl methyl sulfonate mutagenesis(EMS) to elite indica cultivar Huanghuazhan(HHZ) and screened for mutants resistant to imazapic, a herbicide that can inhibit the acetolactate synthase(ALS) in plants. We obtained three mutants of Os ALS gene that have not been reported previously in rice. One of the mutants, with Trp_(548) changed to Met(W_(548)M), was analyzed in more details in this study. This mutation had no negative effect on the plant physiology and morphology as well as rice yield. Compared with the imidazolinone-resistant mutant S_(627)N(Ser_(627) changed to Asn) that has been deployed for Clearfield rice development, W_(548)M mutant showed high levels of resistance to a broad spectrum of five families of ALSinhibiting herbicides, in addition to a higher level of resistance to herbicides of the imidazolinone family.The herbicide-resistance was stably inherited by crossing into other rice lines. Thus, the W_(548)M mutation provides a valuable resource for breeding of herbicide resistant rice and weed management.展开更多
[Objectives]This study was conducted to provide a basis for the rapid identification of the drug spraying effect in early stage and the molecular mechanism of chemical hybridizing in Brassica napus L.[Methods]Quantita...[Objectives]This study was conducted to provide a basis for the rapid identification of the drug spraying effect in early stage and the molecular mechanism of chemical hybridizing in Brassica napus L.[Methods]Quantitative RT-PCR analysis showed that ALS was constitutively expressed in various tissues of 096030,including flower buds,four floral organs (calyxes,petals,stamens and pistils),roots,stems and leaves.ALS was prominently expressed in leaves and was expressed weakly in the petals and stamens.The male sterility-inducing effects of tribenuron-methyl on such two Brassica napus L.varieties as Ningyou18 and 096030 were investigated.[Results]Plants were twice sprayed with 0.2 μg/ml tribenuron-methyl on leaves.The results showed that 8-10 ml of tribenuron- methyl was applied per plant for the first time at bolting stage with 1-2 mm flower buds on 15-20 cm inflorescence,and the second spray was performed with 8-10 ml of tribenuron-methyl per plant 10 d later.The results showed that the percentage of the full sterile plants reached 100%,which lasted for the whole flowering period,and the relative seed setting rate was only about 4%.Thus,this method could fullfill the requirement of hybrid seed production in field.The in-vivo enzyme activity of acetolactate synthase (ALS) was assayed using 2 mm buds collected 3 d after spray.The results showed that 0.2 μg/ml tribenuron-methyl inhibited ALS activity.The ALS activity of Ningyou 18 (CK) and Ningyou 18 (0.2 μg/ml) was 3.20 and 1.30 μmol/(mg·h),respectively,and the ALS activity of 096030 (CK) and 096030 (0.2 μg/ml) was 3.37 and 1.25 μmol/(mg·h),respectively.The relative enzyme activity of ALS in Ningyou18 and 096030 was 40.63% and 37.23%,respectively,both of which decreased significantly.[Conclusions]These results showed that the change of ALS activity may be used as an index for quickly identifying and predicting the chemical hybridizing effect of tribenuron-methyl.展开更多
Background Herbicide tolerance in crops enables them to survive when lethal doses of herbicides are applied to surrounding weeds.Herbicide-tolerant crops can be developed through transgenic approaches or traditional m...Background Herbicide tolerance in crops enables them to survive when lethal doses of herbicides are applied to surrounding weeds.Herbicide-tolerant crops can be developed through transgenic approaches or traditional mutagenesis approaches.At present,no transgenic herbicide tolerant cotton have been commercialized in China due to the genetically-modified organism(GMO)regulation law.We aim to develop a non-transgenic herbicide-tolerant cotton through ethyl methanesulfonate(EMS)mutagenesis,offering an alternative choice for weed management.Results Seeds of an elite cotton cultivar Lumianyan 37(Lu37)were treated with EMS,and a mutant Lu37-1 showed strong tolerance to imidazolinone(IMI)herbicides was identified.A novel nonsynonymous substitution mutation Ser642Asn at acetolactate synthase(ALS)(Gh_D10G1253)in Lu37-1 mutant line was found to be the potential cause to the IMI herbicides tolerance in cotton.The Ser642Asn mutation in ALS did not present among the genomes of natural Gossypium species.Cleaved amplified polymorphic sequence(CAPS)markers were developed to identify the ALS mutant allele.The Arabidopsis overexpressing the mutanted ALS also showed high tolerance to IMI herbicides.Conclusion The nonsynonymous substitution mutation Ser642Asn of the ALS gene Gh_D10G1253 is a novel identi-fied mutation in cotton.This substitution mutation has also been identified in the orthologous ALS genes in other crops.This mutant ALS allele can be used to develop IMI herbicide-tolerant crops via a non-transgenic or transgenic approach.展开更多
Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutatio...Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding.展开更多
Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had hi...Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors, chlorsulfuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.展开更多
Previously, we developed a particle bombardment-mediated transformation protocol in Phyllostachys nigra bamboo by expressing hygromycin phosphotransferase gene (HPT) and neomycin phosphotransferase II gene (NPT II). A...Previously, we developed a particle bombardment-mediated transformation protocol in Phyllostachys nigra bamboo by expressing hygromycin phosphotransferase gene (HPT) and neomycin phosphotransferase II gene (NPT II). Although these marker genes could introduce to several tissue cultured organs (e.g. leaves, buds, and calli) of Phyllostachs bamboo species, some organs showed a high susceptibility and/or a low selectivity to hygromycin and kanamycin. In this report, therefore, we describe advantages and technical details for generating stable transgenic bamboo cells using the particle bombardment method with the mutated-acetolactate synthase gene (mALS) from rice (W548L/S627IOsALS) as a non-antibiotic selection marker. A facile and efficient transformation was achieved with the mALS gene and enhanced fluorescent protein gene (mCherry). Approximately 490 and 1400 mCherry-expressing cells/dish/shot in average were observed in both P. bambusoides and P. nigra under fluorescent stereo-microscope. Stable transgenic bamboo cell lines were generated in a selection medium supplemented with 0.1 μM of bispyribac-sodium (BS) as ALS inhibitor. The integration of mALS gene was identified by in vivo ALS enzyme assay and a PCR-restriction fragment length polymerphism (RFLP) based detection procedures.展开更多
The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot syn...The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot synthesize them. Plants are the ultimate source of these amino acids. Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of BCAAs. The metabolic control of BCAA biosynthesis involves allosteric regulation of ALS by the end-products of the pathway, i.e., valine, leucine and isoleucine. ALS holoenzyme seems to consist of two large catalytic subunits and two small regulatory subunits. In a previous study, using homologous recombination dependent gene targeting we created rice plants in which W548Land S627I mutations were induced into the endogenous gene encoding the ALS catalytic subunit. These two amino acid substitutions conferred hypertolerance to the ALS-inhibiting herbicide bispyripac-sodium. In this study, we revealed that feedback regulation by valine and leucine was reduced by these two amino acid substitutions. Furthermore, in leaves and seeds of ALS mutants with W548Land/or S627I substitution, a 2- to 3-fold increase in BCAAs was detected. Our results suggest that the ALS catalytic subunit is also involved in feedback regulation of ALS, and that judicious modification of the regulatory and catalytic subunits of ALS-coding genes by gene targeting can lead to the efficient accumulation of BCAA in plants.展开更多
基金supported by Major Program of Guangdong Basic and Applied Research(2019B030302006)National Natural Science Foundation of China(U1901203 and 31901532)+2 种基金Natural Science Foundation of Guangdong Province(2018B030308008 and 2018A0303130270)Shenzhen Commission on Innovation and Technology Programs(JCYJ20180507181837997)China Postdoctoral Science Foundation(2018M633069 and 2019M652920)。
文摘Herbicide resistance in crop plants is valuable for integrated weed management in agriculture. Herbicide resistant rice, in particular, is important to management of weedy rice, a close relative of cultivated rice and a noxious weed prevalent in rice fields that remains challenging to farmers worldwide. Herbicide resistant plants can be obtained through transgenic approach or by mutagenesis of regular plant and screening of mutants with elevated resistance to herbicide. In this study, we conducted ethyl methyl sulfonate mutagenesis(EMS) to elite indica cultivar Huanghuazhan(HHZ) and screened for mutants resistant to imazapic, a herbicide that can inhibit the acetolactate synthase(ALS) in plants. We obtained three mutants of Os ALS gene that have not been reported previously in rice. One of the mutants, with Trp_(548) changed to Met(W_(548)M), was analyzed in more details in this study. This mutation had no negative effect on the plant physiology and morphology as well as rice yield. Compared with the imidazolinone-resistant mutant S_(627)N(Ser_(627) changed to Asn) that has been deployed for Clearfield rice development, W_(548)M mutant showed high levels of resistance to a broad spectrum of five families of ALSinhibiting herbicides, in addition to a higher level of resistance to herbicides of the imidazolinone family.The herbicide-resistance was stably inherited by crossing into other rice lines. Thus, the W_(548)M mutation provides a valuable resource for breeding of herbicide resistant rice and weed management.
基金Supported by National Natural Science Foundation of China(31571710)Earmarked Fund for China Agriculture Research System(CARS-12)
文摘[Objectives]This study was conducted to provide a basis for the rapid identification of the drug spraying effect in early stage and the molecular mechanism of chemical hybridizing in Brassica napus L.[Methods]Quantitative RT-PCR analysis showed that ALS was constitutively expressed in various tissues of 096030,including flower buds,four floral organs (calyxes,petals,stamens and pistils),roots,stems and leaves.ALS was prominently expressed in leaves and was expressed weakly in the petals and stamens.The male sterility-inducing effects of tribenuron-methyl on such two Brassica napus L.varieties as Ningyou18 and 096030 were investigated.[Results]Plants were twice sprayed with 0.2 μg/ml tribenuron-methyl on leaves.The results showed that 8-10 ml of tribenuron- methyl was applied per plant for the first time at bolting stage with 1-2 mm flower buds on 15-20 cm inflorescence,and the second spray was performed with 8-10 ml of tribenuron-methyl per plant 10 d later.The results showed that the percentage of the full sterile plants reached 100%,which lasted for the whole flowering period,and the relative seed setting rate was only about 4%.Thus,this method could fullfill the requirement of hybrid seed production in field.The in-vivo enzyme activity of acetolactate synthase (ALS) was assayed using 2 mm buds collected 3 d after spray.The results showed that 0.2 μg/ml tribenuron-methyl inhibited ALS activity.The ALS activity of Ningyou 18 (CK) and Ningyou 18 (0.2 μg/ml) was 3.20 and 1.30 μmol/(mg·h),respectively,and the ALS activity of 096030 (CK) and 096030 (0.2 μg/ml) was 3.37 and 1.25 μmol/(mg·h),respectively.The relative enzyme activity of ALS in Ningyou18 and 096030 was 40.63% and 37.23%,respectively,both of which decreased significantly.[Conclusions]These results showed that the change of ALS activity may be used as an index for quickly identifying and predicting the chemical hybridizing effect of tribenuron-methyl.
基金This research was funded by the National Key Research and Development Program of China,grant number 2016YFD0101418the National Natural Science Foundation of China,grant number 32172047.
文摘Background Herbicide tolerance in crops enables them to survive when lethal doses of herbicides are applied to surrounding weeds.Herbicide-tolerant crops can be developed through transgenic approaches or traditional mutagenesis approaches.At present,no transgenic herbicide tolerant cotton have been commercialized in China due to the genetically-modified organism(GMO)regulation law.We aim to develop a non-transgenic herbicide-tolerant cotton through ethyl methanesulfonate(EMS)mutagenesis,offering an alternative choice for weed management.Results Seeds of an elite cotton cultivar Lumianyan 37(Lu37)were treated with EMS,and a mutant Lu37-1 showed strong tolerance to imidazolinone(IMI)herbicides was identified.A novel nonsynonymous substitution mutation Ser642Asn at acetolactate synthase(ALS)(Gh_D10G1253)in Lu37-1 mutant line was found to be the potential cause to the IMI herbicides tolerance in cotton.The Ser642Asn mutation in ALS did not present among the genomes of natural Gossypium species.Cleaved amplified polymorphic sequence(CAPS)markers were developed to identify the ALS mutant allele.The Arabidopsis overexpressing the mutanted ALS also showed high tolerance to IMI herbicides.Conclusion The nonsynonymous substitution mutation Ser642Asn of the ALS gene Gh_D10G1253 is a novel identi-fied mutation in cotton.This substitution mutation has also been identified in the orthologous ALS genes in other crops.This mutant ALS allele can be used to develop IMI herbicide-tolerant crops via a non-transgenic or transgenic approach.
基金supported by the Key Area Research and Development Program of Guangdong Province(2018B020202008)the National Natural Science Foundation of China(31771808)+2 种基金Beijing Municipal Science and Technology Project(D171100007717001)the National Key Research and Development Program of China(2016YFD0101803)National Engineering Laboratory for Crop Molecular Breeding。
文摘Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding.
文摘Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors, chlorsulfuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.
文摘Previously, we developed a particle bombardment-mediated transformation protocol in Phyllostachys nigra bamboo by expressing hygromycin phosphotransferase gene (HPT) and neomycin phosphotransferase II gene (NPT II). Although these marker genes could introduce to several tissue cultured organs (e.g. leaves, buds, and calli) of Phyllostachs bamboo species, some organs showed a high susceptibility and/or a low selectivity to hygromycin and kanamycin. In this report, therefore, we describe advantages and technical details for generating stable transgenic bamboo cells using the particle bombardment method with the mutated-acetolactate synthase gene (mALS) from rice (W548L/S627IOsALS) as a non-antibiotic selection marker. A facile and efficient transformation was achieved with the mALS gene and enhanced fluorescent protein gene (mCherry). Approximately 490 and 1400 mCherry-expressing cells/dish/shot in average were observed in both P. bambusoides and P. nigra under fluorescent stereo-microscope. Stable transgenic bamboo cell lines were generated in a selection medium supplemented with 0.1 μM of bispyribac-sodium (BS) as ALS inhibitor. The integration of mALS gene was identified by in vivo ALS enzyme assay and a PCR-restriction fragment length polymerphism (RFLP) based detection procedures.
文摘The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot synthesize them. Plants are the ultimate source of these amino acids. Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of BCAAs. The metabolic control of BCAA biosynthesis involves allosteric regulation of ALS by the end-products of the pathway, i.e., valine, leucine and isoleucine. ALS holoenzyme seems to consist of two large catalytic subunits and two small regulatory subunits. In a previous study, using homologous recombination dependent gene targeting we created rice plants in which W548Land S627I mutations were induced into the endogenous gene encoding the ALS catalytic subunit. These two amino acid substitutions conferred hypertolerance to the ALS-inhibiting herbicide bispyripac-sodium. In this study, we revealed that feedback regulation by valine and leucine was reduced by these two amino acid substitutions. Furthermore, in leaves and seeds of ALS mutants with W548Land/or S627I substitution, a 2- to 3-fold increase in BCAAs was detected. Our results suggest that the ALS catalytic subunit is also involved in feedback regulation of ALS, and that judicious modification of the regulatory and catalytic subunits of ALS-coding genes by gene targeting can lead to the efficient accumulation of BCAA in plants.