期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sulfamic Acid as a Cost-effective Catalyst for Acetolysis of Cyclic Ethers
1
作者 WeiZhongGONG BoWANG +3 位作者 YahLongGU LiangYAN LiMingYANG JiShuanSUO 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第6期747-750,共4页
Sulfamic acid has been used as an efficient catalyst and green alternative for conventional acidic materials to promote the acetolysis reaction of THF to produce 1, 4-diacetoxybutane. This method is also applicable in... Sulfamic acid has been used as an efficient catalyst and green alternative for conventional acidic materials to promote the acetolysis reaction of THF to produce 1, 4-diacetoxybutane. This method is also applicable in the acetolysis of other cyclic ethers, such as methyl substituted THF and tetrahydropyran and 1,4-dioxane which is less reactivity. 展开更多
关键词 Sulfamic acid acetolysis cyclic ether acid catalysis ionic liquid.
下载PDF
Isolation of Mannooligosaccharides Corresponding to Antigenic Determinants of Pathogenic Yeast <i>Candida catenulata</i>Cell Wall Mannan 被引量:1
2
作者 Hidemitsu Kobayashi Susumu Kawakami +2 位作者 Yukiko Ogawa Nobuyuki Shibata Shigeo Suzuki 《Advances in Microbiology》 2013年第2期222-226,共5页
To investigate the chemical structure of cell wall mannan of pathogenic yeast, Candida catenulata IFO 0745 strain, which possess the epitopes of antigenic factors 1, 9, and 34 to genus Candida, we previously performed... To investigate the chemical structure of cell wall mannan of pathogenic yeast, Candida catenulata IFO 0745 strain, which possess the epitopes of antigenic factors 1, 9, and 34 to genus Candida, we previously performed the two-dimensional nuclear magnetic resonance (NMR) analysis of this mannan, Fr. C, without the need for harsh procedures. In this study, three oligosaccharides, biose, triose, and tetraose, and mannose were isolated from Fr. C by acetolysis. The results of NMR analysis indicate that the chemical structures of these oligosaccharides were identified to Manα1-2Man, Manα1-2Manα1-2Man, and Manα1-3Manα1-2Manα1-2Man. The most of resultant mannose seems to be originated from the α-1,6-linked mannan backbone which is recognized by antiserum to factor 9. The inhibition assay of slide agglutination reaction between Fr. C and antigenic antibodies using three oligosaccharides indicate that the Manα1-2Manα1-2Man and Manα1-3Manα1-2Manα1-2Man possess domains corresponding to immunodominants of antigenic factors 1 and 34, respectively. 展开更多
关键词 Cell Wall MANNAN Antigenic Factor CANDIDA catenulata acetolysis Oligomannosidic Epitope
下载PDF
Determination of <i>α</i>-1,3-Linked Mannose Residue in the Cell Wall Mannan of <i>Candida tropicalis</i>NBRC 1400 Strain 被引量:1
3
作者 Takuya Kuraoka Takayoshi Yamada +3 位作者 Akito Ishiyama Hiroko Oyamada Yukiko Ogawa Hidemitsu Kobayashi 《Advances in Microbiology》 2020年第1期14-26,共13页
To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was ... To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was shown that the mannan of this strain is composed of α-1,6-, α-1,3-, α-1,2- and β-1,2-linked mannose residues. In this research, the mannan was subjected to three degradation procedures, acid-treatment, α-mannosidase, and acetolysis under two conditions in order to determine the chemical structure of the antigenic oligomannosyl side chains in this molecule. The 1H-nuclear magnetic resonance spectra of resultant oligosaccharides, pentaose and hexaose, demonstrated the existence of the oligomannosyl side chains corresponding to Manα1-3Manα1-2Manα1-2Manα1-2Man and Manα1-3Manα1-2Manα1-2Manα1-2Manα1-2Man, respectively, which have previously also been found in Candida albicans serotype A strain mannans. These findings indicate that C. tropicalis and C. albicans serotype A have no significant difference in the chemical structure of these cell wall mannans. Therefore, it can be interpreted that it is extremely difficult to distinguish both species by targeting the antigenic group in these mannans. 展开更多
关键词 Candida tropicalis Pathogenic Yeast Cell WALL MANNAN Antigenic Oligomannosyl Side Chain acetolysis α-1 3-Linked MANNOSE RESIDUE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部