A sensitive solvent extraction method for the determination of nonamolar concentrations of silicate in natural waters is developed. According to the traditional aqueous silicate method, silicomolybdenum blue formed by...A sensitive solvent extraction method for the determination of nonamolar concentrations of silicate in natural waters is developed. According to the traditional aqueous silicate method, silicomolybdenum blue formed by the reaction between silicate and ammoni- um molydate and reduced by metol-sulfite reagent is extracted by methyl isobutyl ketone. The absorbance can be enhanced substantially up to 10-folds. The detection limit of silicate is 8 nmol/dm^3 , which is one tenth smaller than the traditional method, with the precision of 4.0% at a silicate level of 50 nmol/dm^3 and 3.2% at a silicate level of 6 μmol/dm^3. Comparing the calibration curves in the distilled water and seawater, it can be seen that the salt effect also exists in the extraction method. However, the salt effect is a linear function of the salinity and can be corrected by simple calibration. The proposed method is successfully applied to the determination of silicate in natural waters. Natural concentrations of arsenate, arsenite and phosphate cause negligible interference.展开更多
To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- ga...To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.展开更多
The effects of NaCl, KCl and Na_2SO_4 on the liquid–liquid equilibrium(LLE) data for the ternary system, water+ phenol + methyl isobutyl ketone, were determined at 0.101 MPa and 333.15 K and 343.15 K.The nonrandom tw...The effects of NaCl, KCl and Na_2SO_4 on the liquid–liquid equilibrium(LLE) data for the ternary system, water+ phenol + methyl isobutyl ketone, were determined at 0.101 MPa and 333.15 K and 343.15 K.The nonrandom two-liquid(NRTL) model was used to correlate the experimental data and to yield corresponding binary interaction parameters for these salt containing systems.The Hand and Othmer–Tobias equations were used to confirm the dependability of the determined LLE data in this work.Distribution coefficient and selectivity were used to evaluate the extraction performance of methyl isobutyl ketone with the existence of salt.The magnitude of salt effect on the water + phenol + methyl isobutyl ketone(MIBK) system is in the following order: Na_2SO_4>NaCl>KCl.展开更多
Supported nickel-based catalysts were prepared by the incipient wetness impregnation method for the selective hydrogenation of methyl isobutyl ketone to methyl isobutyl carbinol in a fixed-bed reactor. The effects of ...Supported nickel-based catalysts were prepared by the incipient wetness impregnation method for the selective hydrogenation of methyl isobutyl ketone to methyl isobutyl carbinol in a fixed-bed reactor. The effects of the nickel source,Ni loading, calcination time, and calcination temperature on the hydrogenation performance were studied. The experimental results showed that the Ni/γ-Al_2O_3 catalyst demonstrated the highest catalytic performance under the preparation conditions by using nickel nitrate as the nickel source with a NiO loading of 20%, followed by calcination at 440°C for 5h. In addition,this catalyst showed the largest specific surface area, best crystal structure, highest active component content, smallest particle size, and uniform distribution of NiO on the surface of the carrier. The nickel-based catalyst prepared using the optimized conditions exhibited a 96.1% conversion of methyl isobutyl ketone, with a methyl isobutyl carbinol selectivity of 99.6%. The described procedure is very effective for the preparation of methyl isobutyl carbinol using methyl isobutyl ketone as the feedstock.展开更多
Effectiveness of pulsed power plasma for the degradation of two toxic volatile organic compounds(VOCs),toluene and methyl isobutyl ketone(MIBK),in aqueous solution was evaluated.The plasma degradation of MIBK has been...Effectiveness of pulsed power plasma for the degradation of two toxic volatile organic compounds(VOCs),toluene and methyl isobutyl ketone(MIBK),in aqueous solution was evaluated.The plasma degradation of MIBK has been studied for the first time.The influence of initial concentration of target compound,solution pH and scavengers on percentage degradation was evaluated.100%removal of 200 mg/L of toluene and MIBK was achieved both in liquid and gaseous phases after 12 and 16 min of plasma treatment,respectively.The first order rate constant of toluene and MIBK degradation(for 200 mg/L each)was 0.421 and 0.319 min~(-1)respectively when they were treated individually,and these values decreased slightly during degradation of their mixture.MIBK degradation was slower than toluene and it might be due to semi volatile and hydrophilic nature of MIBK.The effect of initial concentration of toluene and MIBK showed different degradation patterns.Highest degradation of both the compounds was obtained in neutral pH and in absence of scavengers.·OH radical was the major reactive species involved in their degradation.Their degradation in real environmental matrices showed that removal reduced significantly in secondary effluent due to scavenging of reactive species by various ions and organic matter.The total number of degradation intermediates identified in case of toluene and MIBK was 11 and 14 respectively and formate was the one recalcitrant byproduct generated.The degradation pathway of toluene and MIBK involving reactions of reactive oxygen and nitrogen species and reductive species is proposed.展开更多
基金The National Science Foundation of China under contract No.40606028the Special Fund from the National Key Basic Research Program of China under contract No.2006CB400601.
文摘A sensitive solvent extraction method for the determination of nonamolar concentrations of silicate in natural waters is developed. According to the traditional aqueous silicate method, silicomolybdenum blue formed by the reaction between silicate and ammoni- um molydate and reduced by metol-sulfite reagent is extracted by methyl isobutyl ketone. The absorbance can be enhanced substantially up to 10-folds. The detection limit of silicate is 8 nmol/dm^3 , which is one tenth smaller than the traditional method, with the precision of 4.0% at a silicate level of 50 nmol/dm^3 and 3.2% at a silicate level of 6 μmol/dm^3. Comparing the calibration curves in the distilled water and seawater, it can be seen that the salt effect also exists in the extraction method. However, the salt effect is a linear function of the salinity and can be corrected by simple calibration. The proposed method is successfully applied to the determination of silicate in natural waters. Natural concentrations of arsenate, arsenite and phosphate cause negligible interference.
基金Supported by the National High Technology Research and Development Program of China (2008AA06Z111)the Qinghai Key Technology R&D Program (2011-J-154)
文摘To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.
基金Supported by the National Natural Science Foundation of China(21506066)State Key Laboratory of Pulp and Paper Engineering(201708)+2 种基金the Guangdong Natural Science Foundation(2014A030310260)the Fundamental Research Funds for the Central Universities SCUT(2017ZD069)the Guangzhou Technology Project(201804010219)
文摘The effects of NaCl, KCl and Na_2SO_4 on the liquid–liquid equilibrium(LLE) data for the ternary system, water+ phenol + methyl isobutyl ketone, were determined at 0.101 MPa and 333.15 K and 343.15 K.The nonrandom two-liquid(NRTL) model was used to correlate the experimental data and to yield corresponding binary interaction parameters for these salt containing systems.The Hand and Othmer–Tobias equations were used to confirm the dependability of the determined LLE data in this work.Distribution coefficient and selectivity were used to evaluate the extraction performance of methyl isobutyl ketone with the existence of salt.The magnitude of salt effect on the water + phenol + methyl isobutyl ketone(MIBK) system is in the following order: Na_2SO_4>NaCl>KCl.
基金financially supported by the National Natural Science Foundation of China (91634101)the Project on Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (IDHT20180508)
文摘Supported nickel-based catalysts were prepared by the incipient wetness impregnation method for the selective hydrogenation of methyl isobutyl ketone to methyl isobutyl carbinol in a fixed-bed reactor. The effects of the nickel source,Ni loading, calcination time, and calcination temperature on the hydrogenation performance were studied. The experimental results showed that the Ni/γ-Al_2O_3 catalyst demonstrated the highest catalytic performance under the preparation conditions by using nickel nitrate as the nickel source with a NiO loading of 20%, followed by calcination at 440°C for 5h. In addition,this catalyst showed the largest specific surface area, best crystal structure, highest active component content, smallest particle size, and uniform distribution of NiO on the surface of the carrier. The nickel-based catalyst prepared using the optimized conditions exhibited a 96.1% conversion of methyl isobutyl ketone, with a methyl isobutyl carbinol selectivity of 99.6%. The described procedure is very effective for the preparation of methyl isobutyl carbinol using methyl isobutyl ketone as the feedstock.
基金the financial support received from Department of Science and Technology(DST),Government of India(Nos.DST/TM/WTI/WIC/2K17/82(G)and DST/CCP/Co E/141/2018(G))for this study。
文摘Effectiveness of pulsed power plasma for the degradation of two toxic volatile organic compounds(VOCs),toluene and methyl isobutyl ketone(MIBK),in aqueous solution was evaluated.The plasma degradation of MIBK has been studied for the first time.The influence of initial concentration of target compound,solution pH and scavengers on percentage degradation was evaluated.100%removal of 200 mg/L of toluene and MIBK was achieved both in liquid and gaseous phases after 12 and 16 min of plasma treatment,respectively.The first order rate constant of toluene and MIBK degradation(for 200 mg/L each)was 0.421 and 0.319 min~(-1)respectively when they were treated individually,and these values decreased slightly during degradation of their mixture.MIBK degradation was slower than toluene and it might be due to semi volatile and hydrophilic nature of MIBK.The effect of initial concentration of toluene and MIBK showed different degradation patterns.Highest degradation of both the compounds was obtained in neutral pH and in absence of scavengers.·OH radical was the major reactive species involved in their degradation.Their degradation in real environmental matrices showed that removal reduced significantly in secondary effluent due to scavenging of reactive species by various ions and organic matter.The total number of degradation intermediates identified in case of toluene and MIBK was 11 and 14 respectively and formate was the one recalcitrant byproduct generated.The degradation pathway of toluene and MIBK involving reactions of reactive oxygen and nitrogen species and reductive species is proposed.