As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
The UV Vis, NIR and MIR photoacoustic spectra of Pr(aa) 3·2H 2O were measured and most f f transition peaks of Pr 3+ are detected. The peak split and peak shift are studied also. The covalency parame...The UV Vis, NIR and MIR photoacoustic spectra of Pr(aa) 3·2H 2O were measured and most f f transition peaks of Pr 3+ are detected. The peak split and peak shift are studied also. The covalency parameter is calculated and it turns out that the covalent bonds between Pr(Ⅲ) ions and ligands exist. The results conclude that photoacoustic spectroscopy offers a unique and complementary method in analysis of solid rare earth complexes. Compared with conventional FT IR transmission and absorption approaches, PAS has the advantages of fast, nondestructive analysis and high resolution.展开更多
The bulk polymerization of benzonitrile catalyzed by Co(Ⅱ), Co(Ⅲ) and Fe(Ⅲ) acetylacetonate was studied. The results of kinetics study show that the rate of polymerization was proportional to first power of the con...The bulk polymerization of benzonitrile catalyzed by Co(Ⅱ), Co(Ⅲ) and Fe(Ⅲ) acetylacetonate was studied. The results of kinetics study show that the rate of polymerization was proportional to first power of the concentration of catalyst and second power of the concentration of monomer.展开更多
The polymerization kinetics of 4, 4'-biphenyldicarbonitrile and other substituted ben-zonitriles catalyzed by cobaltic acetylacetonate was studied. The structure of polymer ofdifferent substituted benzonitrile was...The polymerization kinetics of 4, 4'-biphenyldicarbonitrile and other substituted ben-zonitriles catalyzed by cobaltic acetylacetonate was studied. The structure of polymer ofdifferent substituted benzonitrile was also determined. It is found that the rate of polymeri-zation and the structure of polymer is greatly affected by the substituent of benzonitriles.展开更多
Complex of meso-tetra-(1-naphthyl)tetrabenzo-porphyrin with holmium acetylacetonate,Ho(TNTBP)acac(TNTBP:meso-tetra-(1-naphthyl) tetrabenzoporphyrin.Hacac:acetylacetone)have been prepared and char- acterized by element...Complex of meso-tetra-(1-naphthyl)tetrabenzo-porphyrin with holmium acetylacetonate,Ho(TNTBP)acac(TNTBP:meso-tetra-(1-naphthyl) tetrabenzoporphyrin.Hacac:acetylacetone)have been prepared and char- acterized by elemental analyses,ultra-violet visible spectra and in- frared spectra.展开更多
The complexes of meso-tetrasubstituted phenylporphyrin with Yttrium acetylacetonate were prepared by reaction of Y(acac)33H_2O with H_2(g)Tpp and were characterized by elemental analyses,ultra-violet,infrared spectra ...The complexes of meso-tetrasubstituted phenylporphyrin with Yttrium acetylacetonate were prepared by reaction of Y(acac)33H_2O with H_2(g)Tpp and were characterized by elemental analyses,ultra-violet,infrared spectra and thermal analyses.展开更多
In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and gluc...In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and glucose metabolism using differentiated 3T3L1 adipocytes as a model system. By confocal laser scanning microscopy, we found that VO(acac)2 induced ROS generation under high glucose stimulation, and the pretreatment of NADPH oxidase inhibitors could significantly reduce the elevated ROS level. Meanwhile, the decreased phosphorylated levels of AKT and the two key modulators of lipolysis(HSL and perilipin) were observed by western blot analysis. We also found that the contents of glycerol release were further reduced as well. In addition, the levels of key regulatory proteins, AS160 and GSK3β, in glucose metabolism pathway were correspondingly reduced. These findings demonstrated that ROS induced by vanadium compounds could act as a metabolic signal to activate AKT pathway to inhibit lipolysis and promote glucose transport and glycogen synthesis rather than by direct action by themselves. Our study contributed to elucidate the anti-diabetic effects of vanadium compounds and provided a theoretical basis for the further development of new vanadium complexes in the prevention and therapeutics of diabetes.展开更多
A new polyaluminosilazane precursor was prepared by polymerizing hexamethylcyclotrisilazane (HMCTS) with aluminum acetylacetonate and the structure of the precursor was characterized by FT-IR and XPS analysis. Result ...A new polyaluminosilazane precursor was prepared by polymerizing hexamethylcyclotrisilazane (HMCTS) with aluminum acetylacetonate and the structure of the precursor was characterized by FT-IR and XPS analysis. Result shows that aluminum was incorporated mainly in form of Al-N bond. Oxygen was also detected and found that it was mainly bonded to silicon.展开更多
In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extract...In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.展开更多
An efficient and green copper(Ⅱ) acetylacetonate-catalyzed protocol for the Huisgen-click reaction in water at 100℃ has been established. The protocol was not only suitable for the reaction between organic azides ...An efficient and green copper(Ⅱ) acetylacetonate-catalyzed protocol for the Huisgen-click reaction in water at 100℃ has been established. The protocol was not only suitable for the reaction between organic azides and alkynes, but also suitable for one-pot three-component reaction among alkyl halides, NaN3 and alkynes.展开更多
With the hope of overcoming the generation of hazardous materials to human health and environment, serious and great endeavor have been made in catalyst fabrication using green chemistry technology. In this paper, the...With the hope of overcoming the generation of hazardous materials to human health and environment, serious and great endeavor have been made in catalyst fabrication using green chemistry technology. In this paper, the manganese (III) acetylacetonate nanoparticles with diameters of about 146 nm were prepared by a simple and environmentally benign route based on hydrolysis of KMnO4 followed by reaction with acetylacetone in rapid stirring rate or ultrasonication. The as-prepared samples were characterized by X-ray diffraction, energy dispersive X-ray fluorescence (EDIX), Fourier transfer infrared spectroscopy and scanning electron microscope. Various parameters were investigated, and the pure and stable crystals of manganese (III) acetylacetonate could be obtained in 98% conversion at a molar ratio 7:1 of acetylacetone to KMnO4 and 75℃after 60 min. We further proposed a mathematical model, and the predicted results from model were in good agreement with experimental results.展开更多
The mechanism of char formation effect of zinc acetylacetonate(Zn(acac)2) on acrylonitrile-butadiene-styrene copolymer(ABS) was studied. Thermal gravimetric analysis(TGA) was used to study the mass loss and ch...The mechanism of char formation effect of zinc acetylacetonate(Zn(acac)2) on acrylonitrile-butadiene-styrene copolymer(ABS) was studied. Thermal gravimetric analysis(TGA) was used to study the mass loss and char yield of ABS composites. In situ temperature-dependent Fourier transform infrared spectroscopy(FTIR) was used to characterize the chemical change during thermal decomposition. Roman spectroscopy and scanning electron microscopy(SEM) were applied to characterize the structure and morphology of the char after combustion. Results showed that the presence of Zn(acac)2 not only slowed down thermal decomposition of the ABS composites, but also increased the charred residue. A more compact and denser char layer with higher graphitization degree was formed for ABS composites with Zn(acac)2. To study the char formation mechanism of Zn(acac)2 on ABS, thermal decomposition was analyzed for the composites of Zn(acac)2 with PB, PS and SAN, respectively. Also, the chemical structure change was investigated for Zn(acac)2 during thermal decomposition. Based on these results, it was deduced that the increase of char yield of ABS composites was probably attributed to the interaction between the units of acrylonitrile in ABS and zinc acetate, produced during the thermal decomposition of Zn(acac)2. A proposed mechanism for crosslinking and the subsequent char formation was presented.展开更多
The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the ...The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.展开更多
The gravimetric analysis of electrodeposited nickel is demonstrated using electrochemical quartz crystal microbalance (EQCM) where the nickel coatings come from a solution of the metal chloride salt separately in eith...The gravimetric analysis of electrodeposited nickel is demonstrated using electrochemical quartz crystal microbalance (EQCM) where the nickel coatings come from a solution of the metal chloride salt separately in either a1choline chloride: 2 ethylene glycol (ethaline) or 1 choline chloride: 2 urea (reline) based ionic liquid. The possibility of adapting the Quartz Crystal Microbalance EQCM (which measures the mass attached to the electrode) to probe kinetics of electrochemically-driven solid state phase transformations has been explored in a Ni electrodeposition in absence and presence of complexing agents ethylene diamine en and acetylacetonate acac from both electrolytes ethaline and reline. The study shows that the current efficiency and the rate of deposition of nickel coatings obtained from ethaline and reline baths in absence of brighteners en and acac are different, and the addition of en and acac to both ionic liquid solutions results in a significant decrease current. And the associated growth rate will also be decreased, suggesting that the en acac stops the formation and growth of Ni nuclei. This suggests that the mechanism of growth is changed.展开更多
In recent years Copper-64 in the chemical form of copper chloride ([64Cu]CuCl2) has been identified as a potential agent for PET imaging and radionuclide therapy. The aim of this research was to determine the biodistr...In recent years Copper-64 in the chemical form of copper chloride ([64Cu]CuCl2) has been identified as a potential agent for PET imaging and radionuclide therapy. The aim of this research was to determine the biodistribution and the labeling of radio nanoparticle with 64CuCl2, the nanoparticles Cu(acac)2/F-TiO2 were mixed with 64CuCl2 (20-37 MBq), then the final solution was used to injected healthy Wistar rats to probe the absorption of nanoparticle inside tissue trough of the groups OH that are formed during the functionalization of the Cu(acac)2/F-TiO2. The “in vivo” evaluation after realize the images study in micro PET equipment, uptake of the radio-nanoparticle was observed in the digestive system in the healthy Wistar rats.展开更多
Al-doped ZnO(AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1indicated the formation of metal chelate as a consequence of the additi...Al-doped ZnO(AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1indicated the formation of metal chelate as a consequence of the addition of acetylacetone to the metal chloride solution. TG-DSC analysis of the AZO gels confirmed the formation of metal chelate as evidenced by the development of several weight loss peaks accompanied by the introduction of new endothermic peaks. The resulting AZO gels were annealed at 500, 600, and 800 ℃ to study the effect of annealing temperature. XRD and SEM results showed that crystallization of AZO gels takes place around 600 ℃. Hexagonal wurtzite structure was identified as the main phase for all the samples. In addition, small shift of the XRD(002) peak coupled with XPS results from the AZO powders confirmed the successful doping of the ZnO powders. Micron sized rod-like AZO powders were uniform in dimension and morphology and remained stable even at 800 ℃.展开更多
Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like str...Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.展开更多
A heterocyclic ligand synthesized by the coupling of diazotized 4-aminoantipyrine with acetylacetone reacted with lanthanide(Ⅲ) nitrate to form complexes of the type [Ln(HAAP)2(NOз)з] where, Ln=La(Ⅲ), Ce(Ⅲ), Pr(...A heterocyclic ligand synthesized by the coupling of diazotized 4-aminoantipyrine with acetylacetone reacted with lanthanide(Ⅲ) nitrate to form complexes of the type [Ln(HAAP)2(NOз)з] where, Ln=La(Ⅲ), Ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), or Gd(Ⅲ) and HAAP=3-{[2-(N-1-phenyl-2,3-dimethylpyrazol-3-in-5-on-4-yl)]hydrazone}pent-2,3,4-trione. The ligand and metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV-Visible, infrared, far infrared and proton NMR spectral data. The spectral data revealed that the ligand existed in the hydrazo form and coordinated to the metal ion without deprotonation in a neutral tridentate manner, through carbonyl oxygen of pyrazolone ring, hydrazo nitrogen and carbonyl oxygen of the acetylace-tone moiety. The molar conductance values adequately supported their non-electrolytic nature. The ligand and the praseodymium(Ⅲ) complex were subjected to X-ray diffraction studies. Thermal decomposition behavior of the lanthanum(Ⅲ) complex was also examined.展开更多
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
文摘The UV Vis, NIR and MIR photoacoustic spectra of Pr(aa) 3·2H 2O were measured and most f f transition peaks of Pr 3+ are detected. The peak split and peak shift are studied also. The covalency parameter is calculated and it turns out that the covalent bonds between Pr(Ⅲ) ions and ligands exist. The results conclude that photoacoustic spectroscopy offers a unique and complementary method in analysis of solid rare earth complexes. Compared with conventional FT IR transmission and absorption approaches, PAS has the advantages of fast, nondestructive analysis and high resolution.
文摘The bulk polymerization of benzonitrile catalyzed by Co(Ⅱ), Co(Ⅲ) and Fe(Ⅲ) acetylacetonate was studied. The results of kinetics study show that the rate of polymerization was proportional to first power of the concentration of catalyst and second power of the concentration of monomer.
文摘The polymerization kinetics of 4, 4'-biphenyldicarbonitrile and other substituted ben-zonitriles catalyzed by cobaltic acetylacetonate was studied. The structure of polymer ofdifferent substituted benzonitrile was also determined. It is found that the rate of polymeri-zation and the structure of polymer is greatly affected by the substituent of benzonitriles.
文摘Complex of meso-tetra-(1-naphthyl)tetrabenzo-porphyrin with holmium acetylacetonate,Ho(TNTBP)acac(TNTBP:meso-tetra-(1-naphthyl) tetrabenzoporphyrin.Hacac:acetylacetone)have been prepared and char- acterized by elemental analyses,ultra-violet visible spectra and in- frared spectra.
文摘The complexes of meso-tetrasubstituted phenylporphyrin with Yttrium acetylacetonate were prepared by reaction of Y(acac)33H_2O with H_2(g)Tpp and were characterized by elemental analyses,ultra-violet,infrared spectra and thermal analyses.
基金National Natural Science Foundation of China(Grant No.20871008 and 21171011)
文摘In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and glucose metabolism using differentiated 3T3L1 adipocytes as a model system. By confocal laser scanning microscopy, we found that VO(acac)2 induced ROS generation under high glucose stimulation, and the pretreatment of NADPH oxidase inhibitors could significantly reduce the elevated ROS level. Meanwhile, the decreased phosphorylated levels of AKT and the two key modulators of lipolysis(HSL and perilipin) were observed by western blot analysis. We also found that the contents of glycerol release were further reduced as well. In addition, the levels of key regulatory proteins, AS160 and GSK3β, in glucose metabolism pathway were correspondingly reduced. These findings demonstrated that ROS induced by vanadium compounds could act as a metabolic signal to activate AKT pathway to inhibit lipolysis and promote glucose transport and glycogen synthesis rather than by direct action by themselves. Our study contributed to elucidate the anti-diabetic effects of vanadium compounds and provided a theoretical basis for the further development of new vanadium complexes in the prevention and therapeutics of diabetes.
基金Project supported by the National Avanced Materials Committee of China(No.715-011-016).
文摘A new polyaluminosilazane precursor was prepared by polymerizing hexamethylcyclotrisilazane (HMCTS) with aluminum acetylacetonate and the structure of the precursor was characterized by FT-IR and XPS analysis. Result shows that aluminum was incorporated mainly in form of Al-N bond. Oxygen was also detected and found that it was mainly bonded to silicon.
基金supported by the National Research Foundation of Korea(NRF)under the Ministry of ScienceICT&Future Planning(Basic Science Research Program[No.2021R1A5A6002853],[No.2022R1A2C3004964],[No.2022R1C1C2008126],[No.2022M3H4A1A03074093])
文摘In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.
文摘An efficient and green copper(Ⅱ) acetylacetonate-catalyzed protocol for the Huisgen-click reaction in water at 100℃ has been established. The protocol was not only suitable for the reaction between organic azides and alkynes, but also suitable for one-pot three-component reaction among alkyl halides, NaN3 and alkynes.
文摘With the hope of overcoming the generation of hazardous materials to human health and environment, serious and great endeavor have been made in catalyst fabrication using green chemistry technology. In this paper, the manganese (III) acetylacetonate nanoparticles with diameters of about 146 nm were prepared by a simple and environmentally benign route based on hydrolysis of KMnO4 followed by reaction with acetylacetone in rapid stirring rate or ultrasonication. The as-prepared samples were characterized by X-ray diffraction, energy dispersive X-ray fluorescence (EDIX), Fourier transfer infrared spectroscopy and scanning electron microscope. Various parameters were investigated, and the pure and stable crystals of manganese (III) acetylacetonate could be obtained in 98% conversion at a molar ratio 7:1 of acetylacetone to KMnO4 and 75℃after 60 min. We further proposed a mathematical model, and the predicted results from model were in good agreement with experimental results.
基金financially supported by the Natural Science Foundation of Zhejiang Province(No.LQ14E030006)the Natural Science Foundation of Ningbo(No.2014A610131)
文摘The mechanism of char formation effect of zinc acetylacetonate(Zn(acac)2) on acrylonitrile-butadiene-styrene copolymer(ABS) was studied. Thermal gravimetric analysis(TGA) was used to study the mass loss and char yield of ABS composites. In situ temperature-dependent Fourier transform infrared spectroscopy(FTIR) was used to characterize the chemical change during thermal decomposition. Roman spectroscopy and scanning electron microscopy(SEM) were applied to characterize the structure and morphology of the char after combustion. Results showed that the presence of Zn(acac)2 not only slowed down thermal decomposition of the ABS composites, but also increased the charred residue. A more compact and denser char layer with higher graphitization degree was formed for ABS composites with Zn(acac)2. To study the char formation mechanism of Zn(acac)2 on ABS, thermal decomposition was analyzed for the composites of Zn(acac)2 with PB, PS and SAN, respectively. Also, the chemical structure change was investigated for Zn(acac)2 during thermal decomposition. Based on these results, it was deduced that the increase of char yield of ABS composites was probably attributed to the interaction between the units of acrylonitrile in ABS and zinc acetate, produced during the thermal decomposition of Zn(acac)2. A proposed mechanism for crosslinking and the subsequent char formation was presented.
基金financial support from ISRO under RESPOND scheme(No.ISRO/RES/3/580/2007-08)
文摘The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.
文摘The gravimetric analysis of electrodeposited nickel is demonstrated using electrochemical quartz crystal microbalance (EQCM) where the nickel coatings come from a solution of the metal chloride salt separately in either a1choline chloride: 2 ethylene glycol (ethaline) or 1 choline chloride: 2 urea (reline) based ionic liquid. The possibility of adapting the Quartz Crystal Microbalance EQCM (which measures the mass attached to the electrode) to probe kinetics of electrochemically-driven solid state phase transformations has been explored in a Ni electrodeposition in absence and presence of complexing agents ethylene diamine en and acetylacetonate acac from both electrolytes ethaline and reline. The study shows that the current efficiency and the rate of deposition of nickel coatings obtained from ethaline and reline baths in absence of brighteners en and acac are different, and the addition of en and acac to both ionic liquid solutions results in a significant decrease current. And the associated growth rate will also be decreased, suggesting that the en acac stops the formation and growth of Ni nuclei. This suggests that the mechanism of growth is changed.
文摘In recent years Copper-64 in the chemical form of copper chloride ([64Cu]CuCl2) has been identified as a potential agent for PET imaging and radionuclide therapy. The aim of this research was to determine the biodistribution and the labeling of radio nanoparticle with 64CuCl2, the nanoparticles Cu(acac)2/F-TiO2 were mixed with 64CuCl2 (20-37 MBq), then the final solution was used to injected healthy Wistar rats to probe the absorption of nanoparticle inside tissue trough of the groups OH that are formed during the functionalization of the Cu(acac)2/F-TiO2. The “in vivo” evaluation after realize the images study in micro PET equipment, uptake of the radio-nanoparticle was observed in the digestive system in the healthy Wistar rats.
基金Funded by the Project of Instituto Politecnico Nacional(SIPIPN-20182176)
文摘Al-doped ZnO(AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1indicated the formation of metal chelate as a consequence of the addition of acetylacetone to the metal chloride solution. TG-DSC analysis of the AZO gels confirmed the formation of metal chelate as evidenced by the development of several weight loss peaks accompanied by the introduction of new endothermic peaks. The resulting AZO gels were annealed at 500, 600, and 800 ℃ to study the effect of annealing temperature. XRD and SEM results showed that crystallization of AZO gels takes place around 600 ℃. Hexagonal wurtzite structure was identified as the main phase for all the samples. In addition, small shift of the XRD(002) peak coupled with XPS results from the AZO powders confirmed the successful doping of the ZnO powders. Micron sized rod-like AZO powders were uniform in dimension and morphology and remained stable even at 800 ℃.
基金Supported by the Research Fund of the International Science & Technology Cooperation Program of China(No.2011DFA52650) and Project 111(B13035)
文摘Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.
文摘A heterocyclic ligand synthesized by the coupling of diazotized 4-aminoantipyrine with acetylacetone reacted with lanthanide(Ⅲ) nitrate to form complexes of the type [Ln(HAAP)2(NOз)з] where, Ln=La(Ⅲ), Ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), or Gd(Ⅲ) and HAAP=3-{[2-(N-1-phenyl-2,3-dimethylpyrazol-3-in-5-on-4-yl)]hydrazone}pent-2,3,4-trione. The ligand and metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV-Visible, infrared, far infrared and proton NMR spectral data. The spectral data revealed that the ligand existed in the hydrazo form and coordinated to the metal ion without deprotonation in a neutral tridentate manner, through carbonyl oxygen of pyrazolone ring, hydrazo nitrogen and carbonyl oxygen of the acetylace-tone moiety. The molar conductance values adequately supported their non-electrolytic nature. The ligand and the praseodymium(Ⅲ) complex were subjected to X-ray diffraction studies. Thermal decomposition behavior of the lanthanum(Ⅲ) complex was also examined.