The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established hu...The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methyla-tion-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.展开更多
Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play ...Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.展开更多
This study investigated the inhibitory effects of curcumin on proliferation of hematological malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacetylation levels. The effects of cu...This study investigated the inhibitory effects of curcumin on proliferation of hematological malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacetylation levels. The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay. The expression of acetylated histone-3 (H3) in Raji, HL60 and K562 cells, and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS. The results showed curcumin inhibited pro- liferation of Raji cells significantly in a time- and dose-dependent fashion, while exhibited low toxicity in PBMCs. Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested. In conclusion, curcumin inhibited proliferation of Raji cells selectively, enhanced the level of acetylated H3 in Raji, HL60, and K562 cells, which acted as a histone deacetylase inhibitor like TSA. Furthermore, up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells.展开更多
The p53 tumor suppressor is a sequence-specific transcription factor that undergoes an abundance of post-translational modifications for its regulation and activation.Acetylation of p53 is an important reversible enzy...The p53 tumor suppressor is a sequence-specific transcription factor that undergoes an abundance of post-translational modifications for its regulation and activation.Acetylation of p53 is an important reversible enzymatic process that occurs in response to DNA damage and genotoxic stress and is indispensible for p53 transcriptional activity.p53 was the first non-histone protein shown to be acetylated by histone acetyl transferases,and a number of more recent in vivo models have underscored the importance of this type of modification for p53 activity.Here,we review the current knowledge and recent findings of p53 acetylation and deacetylation and discuss the implications of these processes for the p53 pathway.展开更多
In eukaryotes,histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation.HDA6 is a histone deacetylase involved in the transcriptional regulation of...In eukaryotes,histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation.HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements(TEs)in Arabidopsis thaliana.HDA6 has been shown to participate in several complexes in plants,including a conserved SIN3 complex.Here,we uncover a novel protein complex containing HDA6,several Harbinger transposon-derived proteins(HHP1,SANT1,SANT2,SANT3,and SANT4),and MBD domain-containing proteins(MBD1,MBD2,and MBD4).We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC,MAF4,and MAF5,resulting in a late flowering phenotype.Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes,TE silencing is unaffected in sant-null mutants.Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation.Collectively,our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.展开更多
Interleukin-18 (IL-18) is a pleiotropic cytokine involved in the development of T helper type 1 (Thl) cells, and it plays important roles in regulation of both the innate and acquired immune responses. The aim of this...Interleukin-18 (IL-18) is a pleiotropic cytokine involved in the development of T helper type 1 (Thl) cells, and it plays important roles in regulation of both the innate and acquired immune responses. The aim of this study was to elucidate whether the reversible histone acetylation/ deacetylation modification participates in the regulation of IL-18 transcription expression. The transcription coactivator p300 containing the histone acetyltransferase (HAT) activity, and the histone deacetylase 3 (HDAC3) were used in this study to analyze the effect of this modification in the regula-tion of mouse IL-18 gene. The results demonstrate that transfection of p300-expression plasmid promotes the en-dogenous IL-18 mRNA synthesis in J774 cells, and stimulates the activation of IL-18 promoter. It has been found that this stimulating effect of p300 was reversed by HDAC3, indicat-ing the involvement of the reversible histone acetyla-tion/deacetylation modification in IL-18 regulation. Fur-thermore, the data show that the HAT activity of p300 was essential to its function in activating IL-18 promoter. In ad-dition, p300 was shown to be able to work synergistically with the transcription factor c-Fos on activation of IL-18 promoter and this effect could also be impaired by HDAC3. Results presented in this paper indicate that the reversible histone acetylation/deacetylation modification plays an im-portant role in the transcriptional regulation of IL-18.展开更多
In eukaryotes, nucleosome is the basic unit of chromatin. Nucleosome is composed of an octamer of histone proteins (two molecules each of histones H 2A , H 2B , H 3 and H 4) and DNA strand wound around the octamer. So...In eukaryotes, nucleosome is the basic unit of chromatin. Nucleosome is composed of an octamer of histone proteins (two molecules each of histones H 2A , H 2B , H 3 and H 4) and DNA strand wound around the octamer. Some data show that core histone octamer can affect gene transcription both \%in vitro\% and \%in vivo.\% Recent results indicate that histone acetylation/deacetylation is a key step to regulate activity of genes. This article summarizes some coactivators, such as GCN5p, P300/CBP and TAF Ⅱ 250, which are recently found to have histone acetyltransferase activity. The relationship between these coactivators and gene activation is also described. Besides, this article concerns some corepressors which have histone deacetylase activity, such as Rpd3p, HDAC2. These corepressors combine with other protein complex and then repress transcription. Finally, some problems to be solved and the future direction in this active field are discussed.展开更多
In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and...In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neu-tralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.展开更多
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on ...Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified.Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity,protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.展开更多
The α-acetyl ketene dithioacetals 2, which bear various alkylthio groups, are a kind of important intermediates in organic synthesis. In this paper, dithioacetals 2 were prepared in very high yields (90%—100%) via t...The α-acetyl ketene dithioacetals 2, which bear various alkylthio groups, are a kind of important intermediates in organic synthesis. In this paper, dithioacetals 2 were prepared in very high yields (90%—100%) via the deacetylation reaction of the corresponding α,α-diacetyl ketene dithioacetals 1 in the presence of concentrated sulfuric acid. This reaction involves an %in-situ% electrophilic addition-deacetylation mechanism and shows the nucleophilicity of the α-carbon atom in α-oxo ketenedithioacetals. Meanwhile, when the reaction time was prolonged to 22—25 h, the β-keto thiolesters 3a and 3c were produced in good yields.展开更多
目的观察二烯丙基二硫(DADS)在体内诱导胃癌细胞分化的作用及对人胃癌细胞移植瘤组蛋白乙酰化的影响。方法裸鼠皮下注入人胃癌细胞MGC803建立人胃癌异种移植模型,采用光学显微镜观察移植瘤细胞形态变化,流式细胞光度术和W estern b lot...目的观察二烯丙基二硫(DADS)在体内诱导胃癌细胞分化的作用及对人胃癌细胞移植瘤组蛋白乙酰化的影响。方法裸鼠皮下注入人胃癌细胞MGC803建立人胃癌异种移植模型,采用光学显微镜观察移植瘤细胞形态变化,流式细胞光度术和W estern b lot分析DADS对MGC803细胞移植瘤细胞周期分布的影响及瘤组织中p21WAF1蛋白、组蛋白H3、H4乙酰化的表达情况。结果腹腔注射DADS剂量为100、200 mg.kg-1时对移植瘤有明显生长抑制作用;光学显微镜显示经DADS处理后瘤细胞密度及异型性明显减小。流式细胞仪分析结果显示DADS呈浓度依赖性将移植瘤细胞阻滞在G2/M期。DADS浓度为100 mg.kg-1和200 mg.kg-1作用瘤细胞后,与对照组相比分别可使G2/M期细胞增加2.22和3.37倍。W estern b lot分析表明在G2/M期阻滞同时有组蛋白H3乙酰化表达增加,但组蛋白H4乙酰化表达水平不受DADS作用的影响;瘤组织中的p21WAF1蛋白表达量也随DADS浓度升高而上升。结论DADS对胃癌细胞裸鼠移植瘤的生长有明显抑制和诱导分化作用,这种抑制可能与其阻滞移植瘤细胞周期、上调瘤细胞组蛋白乙酰化及p21WAF1蛋白水平有关。展开更多
基金This work was supported in part by National Natural Science Foundation of China(No.30170413)the Foundation for Jing Yuan FANG of National Excellent Doctoral Dissertation of China(No.199946)the Foundation of Shanghai Education Committee(Shuguang Plan,No.02SG45).
文摘The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methyla-tion-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.
文摘Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.
基金supported by a grant from the National Natural Sciences Foundation of China (No. 30271672).
文摘This study investigated the inhibitory effects of curcumin on proliferation of hematological malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacetylation levels. The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay. The expression of acetylated histone-3 (H3) in Raji, HL60 and K562 cells, and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS. The results showed curcumin inhibited pro- liferation of Raji cells significantly in a time- and dose-dependent fashion, while exhibited low toxicity in PBMCs. Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested. In conclusion, curcumin inhibited proliferation of Raji cells selectively, enhanced the level of acetylated H3 in Raji, HL60, and K562 cells, which acted as a histone deacetylase inhibitor like TSA. Furthermore, up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells.
文摘The p53 tumor suppressor is a sequence-specific transcription factor that undergoes an abundance of post-translational modifications for its regulation and activation.Acetylation of p53 is an important reversible enzymatic process that occurs in response to DNA damage and genotoxic stress and is indispensible for p53 transcriptional activity.p53 was the first non-histone protein shown to be acetylated by histone acetyl transferases,and a number of more recent in vivo models have underscored the importance of this type of modification for p53 activity.Here,we review the current knowledge and recent findings of p53 acetylation and deacetylation and discuss the implications of these processes for the p53 pathway.
基金This work was supported by grants from the National Key Research and Development Program of China(2020YFE0202300)the Central Public-interest Scientific Institution Basal Research Fund,the BBSRC under the Grant Reference BB/P008569/1 to J.G.C.N.V.and E.dL.,and an Erasmus plus training award to L.G.
文摘In eukaryotes,histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation.HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements(TEs)in Arabidopsis thaliana.HDA6 has been shown to participate in several complexes in plants,including a conserved SIN3 complex.Here,we uncover a novel protein complex containing HDA6,several Harbinger transposon-derived proteins(HHP1,SANT1,SANT2,SANT3,and SANT4),and MBD domain-containing proteins(MBD1,MBD2,and MBD4).We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC,MAF4,and MAF5,resulting in a late flowering phenotype.Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes,TE silencing is unaffected in sant-null mutants.Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation.Collectively,our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.
文摘Interleukin-18 (IL-18) is a pleiotropic cytokine involved in the development of T helper type 1 (Thl) cells, and it plays important roles in regulation of both the innate and acquired immune responses. The aim of this study was to elucidate whether the reversible histone acetylation/ deacetylation modification participates in the regulation of IL-18 transcription expression. The transcription coactivator p300 containing the histone acetyltransferase (HAT) activity, and the histone deacetylase 3 (HDAC3) were used in this study to analyze the effect of this modification in the regula-tion of mouse IL-18 gene. The results demonstrate that transfection of p300-expression plasmid promotes the en-dogenous IL-18 mRNA synthesis in J774 cells, and stimulates the activation of IL-18 promoter. It has been found that this stimulating effect of p300 was reversed by HDAC3, indicat-ing the involvement of the reversible histone acetyla-tion/deacetylation modification in IL-18 regulation. Fur-thermore, the data show that the HAT activity of p300 was essential to its function in activating IL-18 promoter. In ad-dition, p300 was shown to be able to work synergistically with the transcription factor c-Fos on activation of IL-18 promoter and this effect could also be impaired by HDAC3. Results presented in this paper indicate that the reversible histone acetylation/deacetylation modification plays an im-portant role in the transcriptional regulation of IL-18.
文摘In eukaryotes, nucleosome is the basic unit of chromatin. Nucleosome is composed of an octamer of histone proteins (two molecules each of histones H 2A , H 2B , H 3 and H 4) and DNA strand wound around the octamer. Some data show that core histone octamer can affect gene transcription both \%in vitro\% and \%in vivo.\% Recent results indicate that histone acetylation/deacetylation is a key step to regulate activity of genes. This article summarizes some coactivators, such as GCN5p, P300/CBP and TAF Ⅱ 250, which are recently found to have histone acetyltransferase activity. The relationship between these coactivators and gene activation is also described. Besides, this article concerns some corepressors which have histone deacetylase activity, such as Rpd3p, HDAC2. These corepressors combine with other protein complex and then repress transcription. Finally, some problems to be solved and the future direction in this active field are discussed.
基金This work was supported by the National Natural Science Foundation of China(Grant No.30370316)National Basic Research Program of China(Grant No.2005CB522404)Young Teacher Foundation of Northeast Normal University(Grant No.111494025).
文摘In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neu-tralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.
基金supported by grants from the National Natural Science Foundation of China (No. 32070551 and No. 32371326)the Youth Innovation Promotion Association, CAS (No. 201860)Key Research Program of Frontier Sciences, Chinese Academy of Sciences (ZDBS-LY-SM009)。
文摘Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified.Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity,protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
文摘The α-acetyl ketene dithioacetals 2, which bear various alkylthio groups, are a kind of important intermediates in organic synthesis. In this paper, dithioacetals 2 were prepared in very high yields (90%—100%) via the deacetylation reaction of the corresponding α,α-diacetyl ketene dithioacetals 1 in the presence of concentrated sulfuric acid. This reaction involves an %in-situ% electrophilic addition-deacetylation mechanism and shows the nucleophilicity of the α-carbon atom in α-oxo ketenedithioacetals. Meanwhile, when the reaction time was prolonged to 22—25 h, the β-keto thiolesters 3a and 3c were produced in good yields.
文摘目的观察二烯丙基二硫(DADS)在体内诱导胃癌细胞分化的作用及对人胃癌细胞移植瘤组蛋白乙酰化的影响。方法裸鼠皮下注入人胃癌细胞MGC803建立人胃癌异种移植模型,采用光学显微镜观察移植瘤细胞形态变化,流式细胞光度术和W estern b lot分析DADS对MGC803细胞移植瘤细胞周期分布的影响及瘤组织中p21WAF1蛋白、组蛋白H3、H4乙酰化的表达情况。结果腹腔注射DADS剂量为100、200 mg.kg-1时对移植瘤有明显生长抑制作用;光学显微镜显示经DADS处理后瘤细胞密度及异型性明显减小。流式细胞仪分析结果显示DADS呈浓度依赖性将移植瘤细胞阻滞在G2/M期。DADS浓度为100 mg.kg-1和200 mg.kg-1作用瘤细胞后,与对照组相比分别可使G2/M期细胞增加2.22和3.37倍。W estern b lot分析表明在G2/M期阻滞同时有组蛋白H3乙酰化表达增加,但组蛋白H4乙酰化表达水平不受DADS作用的影响;瘤组织中的p21WAF1蛋白表达量也随DADS浓度升高而上升。结论DADS对胃癌细胞裸鼠移植瘤的生长有明显抑制和诱导分化作用,这种抑制可能与其阻滞移植瘤细胞周期、上调瘤细胞组蛋白乙酰化及p21WAF1蛋白水平有关。