期刊文献+
共找到745篇文章
< 1 2 38 >
每页显示 20 50 100
Melatonin Alleviates Abscisic Acid Deficiency Inhibition on Photosynthesis and Antioxidant Systems in Rice under Salt Stress
1
作者 Feiyu Yan Xin Chen +7 位作者 Zhenzhen Wang Yuxuan Xia Dehui Zheng Sirui Xue Hongliang Zhao Zhiwei Huang Yuan Niu Guoliang Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1421-1440,共20页
Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study inves... Melatonin and abscisic acid,as major plant hormones,play important roles in the physiological and biochemical activities of crops,but the interaction between the two under salt stress is not yet clear.This study investigated the endogenous levels of melatonin and abscisic acid in rice by using exogenous melatonin,abscisic acid,and their synthetic inhibitors,and examined their interactions under salt stress.The research results indicate that melatonin and abscisic acid can improve rice salt tolerance.Melatonin alleviated the salt sensitivity caused by abscisic acid deficiency,increased antioxidant enzyme activity and antioxidant content in rice treated with abscisic acid synth-esis inhibitors,and reduced total reactive oxygen species content and thiobarbituric acid reactive substance accu-mulation.Melatonin also increased the activity of key photosynthetic enzymes and the content of photosynthetic pigments,maintaining the parameters of photosynthetic gas exchange and chlorophyllfluorescence.In summary,melatonin alleviated the effects of abscisic acid deficiency on photosynthesis and antioxidant systems in rice and improved salt tolerance.This study is beneficial for expanding the understanding of melatonin regulation of crop salt tolerance. 展开更多
关键词 MELATONIN abscisic acid salt stress RICE PHOTOSYNTHESIS antioxidant system
下载PDF
Effect of Ascorbic Acid and Silicium on Photosynthesis, Antioxidant Enzyme Activity, and Fatty Acid Contents in Canola Exposure to Salt Stress 被引量:9
2
作者 Ahmad Bybordi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1610-1620,共11页
The effects of exogenous ascorbic acid and silicium on leaf fresh weigh, seed yield, photosynthesis, changes of the activities of major antioxidant enzymes, nitrate reductase activity, proline accumulation, chlorophyl... The effects of exogenous ascorbic acid and silicium on leaf fresh weigh, seed yield, photosynthesis, changes of the activities of major antioxidant enzymes, nitrate reductase activity, proline accumulation, chlorophyll content, and fatty acid composition were investigated in salt-stressed canola. A hydroponic pot experiment was conducted based on randomized complete block design, factorial arrangement was used with 16 combinations of salinity stress (0, 100, 200, and 300 mmol L-1 NaC1), ascorbic acid (0 and 30 mmol L-1), and silicium (2 and 4 mmol L-1 from potassium silicate) with three replicates. The results showed that salinity significantly decreased leaf area and leaf fresh weight, seed yield, photosynthesis, nitrate reductase activity, chlorophyll content, and seed protein percentage. Conversely, respiration, antioxidant enzymes activity, proline accumulation, and linolenic acid percentage increased due to salt stress. Ascorbic acid application improved photosynthesis and seed yield and mitigated antioxidant enzyme activity. In addition, nitrate reductase activity and chlorophyll a and b were positively affected by ascorbic acid. Regarding silicium application, that was found that leaf area, leaf fresh weight, seed yield and photosynthesis, ascorbate peroxidase activity, nitrate reductase activity, and chlorophyll content increased, while respiration decreased. Furthermore, silicium had not significant effect on antioxidant enzyme activity. In general, ascorbic acid and silicium were involved in the defensive mechanisms against salinity stress and it can be suggested that, ascorbic acid and silicium application had positive effect on canola growth under conditions of salt stress. 展开更多
关键词 ascorbic acid salt stress CANOLA SILICIUM
下载PDF
Effects of Exogenous Trehalose on the Metabolism of Sugar and Abscisic Acid in Tomato Seedlings Under Salt Stress 被引量:4
3
作者 Yanchun Feng Xiuyu Chen +2 位作者 Yulong He Xiaohong Kou Zhaohui Xue 《Transactions of Tianjin University》 EI CAS 2019年第5期451-471,共21页
Salt stress a ects the growth and development of plants, which results in a decrease in crop quality and yield. In this study, we used tomato seedlings treated with salt and trehalose as experimental materials and ana... Salt stress a ects the growth and development of plants, which results in a decrease in crop quality and yield. In this study, we used tomato seedlings treated with salt and trehalose as experimental materials and analyzed them using the technique for order preference by similarity to ideal solution analysis to select the optimal trehalose concentration for treatment. We also determined the contents of sugar and abscisic acid (ABA) and detected the expression of genes involved in the metabolism of sugar and ABA by quantitative real-time PCR. Results showed that the optimal trehalose concentration was 2 mmol/L for tomato seedlings under salt stress. Exogenous trehalose decreased the starch content and increased the soluble sugar con- tent by a ecting the expression of genes related to the metabolism of starch and soluble sugar. Exogenous trehalose altered the accumulation and distribution of sugar by inducing the upregulation of sugar transporter genes. Furthermore, trehalose increased the ABA content to induce salt stress response by regulating the expression of genes related to the synthesis and metabolism of ABA. In conclusion, trehalose can e ectively alleviate salt stress and enhance salt tolerance of tomato. These ndings provide a novel perspective and a better resource to investigate the salt tolerance mechanism and a new method for alleviating salt stress in tomato. 展开更多
关键词 Tomato TREHALOSE salt stress SUGAR METABOLISM SUGAR TRANSPORTER Abscisic acid
下载PDF
Effect of Acid and Alkali Stress on Seed Germination and Seedling Growth of Caragana versicolor
4
作者 Ge Qingsong Wang Hang +1 位作者 Gao Yi Fang Jiangping 《Animal Husbandry and Feed Science》 CAS 2019年第2期45-48,共4页
With seeds of Caragana versicolor in Purang County, Tibet as the materials, the seed germination and seedling growth of C. versicolor were measured under acid and alkali stress, and the soil acidity and alkalinity for... With seeds of Caragana versicolor in Purang County, Tibet as the materials, the seed germination and seedling growth of C. versicolor were measured under acid and alkali stress, and the soil acidity and alkalinity for normal growth and development of C. versicolor were determined, so as to provide the theoretical basis for cultivation of C. versicolor in acidified or alkaline soil. The results showed that the seed germination of C. versicolor was promoted when treated by strong acid (pH 3) and strong alkali (pH 11) solutions, and the seedling effect was good. The results also indicated that C. versicolor was a kind of plant with strong acid and alkali resistance, suitable for cultivation in acid and alkali soil areas. 展开更多
关键词 Tibet CARAGANA VERSICOLOR acid and alkali stress Seed germination SEEDLING growth
下载PDF
Effects of Salt Stress on Fatty Acid Composition of Thylakoid Membrane of Two Rice Cultivars Differing in Salt Tolerance 被引量:15
5
作者 王仁雷 华春 +2 位作者 周峰 周泉澄 周斌伟 《Agricultural Science & Technology》 CAS 2008年第4期8-13,共6页
[Objective] The aim of the study is to understand the changes of fatty acid composition of rice thylakoid membrane under salt stress.[Method] Under salt stress of different concentrations of NaCl,rice seedlings of Pok... [Objective] The aim of the study is to understand the changes of fatty acid composition of rice thylakoid membrane under salt stress.[Method] Under salt stress of different concentrations of NaCl,rice seedlings of Pokkali and Peta with six leaves and one central leaf were used as experimental materials to extract the fatty acid from their thylakoid membranes,and gas chromatograph(1890)was used to analyze fatty acid composition.[Result] Fatty acid component 14∶0,18∶0,16∶1(3t),18∶1 in both the two experimental materials showed little variations in the first four days of salt stress,whereafter they increased slightly;while the fatty acid component 16∶0 and level of saturation of fatty acid(LSFA)showed the similar variation trend in the first four days of treatment compared to those of the fatty acid components mentioned above,whereafter they rose in Pokkali and presented an opposite variation trend in Peta;fatty acid component 18∶3 and level of unsaturation of fatty acid(LUFA)reduced all the time under stress condition,and the reducing amplitude in 100 mmol/L NaCl treatment group was smaller than that of 100 mmol/L NaCl treatment group,and in Pokkali was smaller than that in Peta under specific conditions.Meanwhile,level of saturation of fatty acid in both experimental materials increased,and the rising amplitude in Peta was smaller than that of Pokkali.[Conclusion] With regard to LUFA,Pokkali is endowed with more salt tolerance than Peta. 展开更多
关键词 salt stress ORYZA SATIVA FATTY acid
下载PDF
Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress 被引量:6
6
作者 ZHAO Lei LIU Qun +2 位作者 ZHANG Ya-qing CUI Qing-yu LIANG Yuan-cun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1341-1346,共6页
Salt stress is a major environmental factor that inhibits crop growth.Trichoderma spp.are the most efficient biocontrol fungi and some of the strains can stimulate plant growth.Phosphate solubilization is known as one... Salt stress is a major environmental factor that inhibits crop growth.Trichoderma spp.are the most efficient biocontrol fungi and some of the strains can stimulate plant growth.Phosphate solubilization is known as one of the main mechanisms in promoting plant growth,but the underlying mechanisms of phosphate solubilization in the salinity still need to be explored.The Trichoderma asperellum Q1 isolated and identified in our lab is a beneficial rhizosphere biocontrol fungus with a high phosphate solubilization activity.It could produce acid and alkaline phosphatases when using insoluble organic phosphorus as the sole phosphorus source,the salt stress increased the phosphorus-solubilization ability of the strain and the activities of the two enzymes.Furthermore,an acid phosphatase was purified from the fermentation broth by ammonium sulphate precipitation,ion-exchange,and gel filtration chromatography.Its molecular weight was 55 k Da as determined by SDS-PAGE.The purified acid phosphatase was used to investigate growth performance of Arabidopsis thaliana by plate assay and the result showed that it contributed to Arabidopsis growth by transforming organic phosphate into a soluble inorganic form under salt stress.To our knowledge,this is the first report on acid phosphatase purification from T.asperellum and its function in regulation of plant growth under salt stress. 展开更多
关键词 Trichoderma asperellum Arabidopsis thaliana acid phosphatase plant-growth promotion salt stress
下载PDF
Effects of Cinnamic Acid on Bacterial Community Diversity in Rhizosphere Soil of Cucumber Seedlings Under Salt Stress 被引量:9
7
作者 LIU Jing WU Feng-zhi YANG Yang 《Agricultural Sciences in China》 CAS CSCD 2010年第2期266-274,共9页
To investigate the effects of a plant autotoxin, cinnamic acid, on bacterial communities in the rhizosphere soil of cucumber seedlings under salt stress, we used cucumber as the experimental material, cinnamic acid as... To investigate the effects of a plant autotoxin, cinnamic acid, on bacterial communities in the rhizosphere soil of cucumber seedlings under salt stress, we used cucumber as the experimental material, cinnamic acid as the autotoxin, and NaCl to apply salt stress. Bacterial communities in the rhizosphere soil were analyzed using polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and clone sequencing. Salt stress decreased the diversity of bacterial species in rhizosphere soil of cucumber seedlings at several growth stages. Cinnamic acid exacerbated the effects of salt stress at high concentrations, but alleviated its effects at low concentrations. Cloning and sequencing results indicated that DGGE bands amplified from soil samples showed high homology to uncultured bacterial species. Cinnamic acid at 50 mg kg^-1 soil improved cucumber growth and was the most effective treatment to alleviate the effects of salt stress on bacterial communities. 展开更多
关键词 BACTERIA cinnamic acid CUCUMBER salt stress PCR-DGGE
下载PDF
Molecular cloning and functional characterization of a soybean GmG MP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants 被引量:1
8
作者 XUE Chen-chen XU Jin-yan +5 位作者 WANG Can GUO Na HOU Jin-feng XUE Dong ZHAO Jin-ming XING Han 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期539-553,共15页
L-Ascorbic acid (AsA) plays an important role in plants and animals. In plants, GDP-D-mannose pyrophosphorylase (GMP) is essential in the AsA biosynthetic pathway. However, little is known about the genes encoding... L-Ascorbic acid (AsA) plays an important role in plants and animals. In plants, GDP-D-mannose pyrophosphorylase (GMP) is essential in the AsA biosynthetic pathway. However, little is known about the genes encoding GMP in soybean and here we report genetic and functional analysis of the GmGMP1 (Glycine max GDP-D-mannose pyrophosphorylase 1) gene in this species. GmGMP1 encoded a GDP-mannose pyrophosphorylase and exhibited higher transcript levels in the leaf than in the root, stem, flower, and seed. Transcript of this gene was ubiquitous in the vegetative and reproductive organs, and was induced by abiotic stress and light. Increasing expression of GmGMP1 in Arabidopsis and soybean through an overexpressing approach caused pronounced enhancement of AsA content, and was implicated in lowering the superoxide anion radical content and lipid peroxidation levels in Arabidopsis, and conferring tolerance to osmotic and high salt stresses during seed germination. The present study represents the first systematic determination of soybean genes encoding GDP-mannose pyrophosphorylase and provides useful evidence for the functional involvement of GmGMP1 in control of AsA content and conferring tolerance to osmotic and salt stress. 展开更多
关键词 GDP-mannose pyrophosphorylase L-ascorbic acid superoxide anion radical chlorophyll contents salt stress
下载PDF
Adaptive strategy of Nitraria sibirica to transient salt,alkali and osmotic stresses via the alteration of Na+/K+fluxes around root tips
9
作者 Xindi Mei Ting Dai Yingbai Shen 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期425-432,共8页
Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as ... Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as the control,was subjected to transient salt stress(100 mM NaCl),alkali stress(50 mM Na_(2)CO_(3)),and osmotic stress(175 mM mannitol).The ionic fluxes of Na^(+)and K^(+)in the root apical region were measured.Results show that,under salt and alkali stress,N.sibirica roots exhibited higher capacities to limit Na+influx and reduce K+efflux,thereby resulting in lower Na^(+)/K^(+)ratios compared with V.radiata roots.Alkali stress induced stronger Na^(+)influx and K+efflux in the root salt stress treatment;Na^(+)influx was mainly observed in the root cap,while K^(+)efflux was mainly observed in the elongation zone.While under osmotic stress,N.sibirica roots showed stronger Na+efflux and weaker K+efflux than V.radiata roots.Na+efflux was mainly observed in the root elongation zone,while K+efflux was in the root cap.These results reveal the ionic strategy of N.sibirica in response to transient salt,alkali,and osmotic stresses through the regulation of Na+/K+flux homeostasis. 展开更多
关键词 Nirtaria sibirica Na^(+)/K^(+)fl uxes Na^(+)/K^(+)ratios salt stress alkali stress Osmotic stress
下载PDF
Analysis of Organic Acids Accumulated in Kochia Scoparia Shoots and Roots by Reverse-phase High Performance Liquid Chromatography Under Salt and Alkali Stress 被引量:7
10
作者 YAN Hong ZHAO Wei +2 位作者 JIAO Xin-qian YAN Bing-jun ZHOU Dao-wei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第3期315-318,共4页
Several organic acids accumulated in Kochia Scoparia shoots and roots were studied by means of reverse-phase high performance liquid chromatography with a C18 column. Five types of binary organic acids were separated.... Several organic acids accumulated in Kochia Scoparia shoots and roots were studied by means of reverse-phase high performance liquid chromatography with a C18 column. Five types of binary organic acids were separated. The organic acid concentrations were determined in K. Scoparia seedlings stressed by saline (NaCI) and alkaline (NaHCO3) at the same Na^+ concentration. Concentrations of organic acids are stimulated by alkaline because the cells will adjust their pH values through the accumulation of organic acids, when the environment is basic. The concentrations of oxalic acid and succinic acid are higher than those of other organic acids, including tartaric acid and malic acid, and the concentration of citric acid is the lowest. The concentrations of the organic acids in the roots are higher than those in the shoots under salt(NaCI) stress, but the results are opposite while the roots are under alkali ( NaHCO3 ) stress. This indicates that there are different adaptive strategies for K. Scopar/a seedlings in organic acid metabolism under salt and alkali stress. 展开更多
关键词 Kochia Scoparia(L. Sehrad salt stress alkaline stress Organic acid HPLC
下载PDF
Genome-wide analysis of soybean DnaJA-family genes and functional characterization of GmDnaJA6 responses to saline and alkaline stress
11
作者 Binshuo Zhang Zhen Liu +10 位作者 Runnan Zhou Peng Cheng Haibo Li Zhiyang Wang Ying Liu Mingyang Li Zhenqing Zhao Zhenbang Hu Qingshan Chen Xiaoxia Wu Ying Zhao 《The Crop Journal》 SCIE CSCD 2023年第4期1230-1241,共12页
Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression ... Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots. 展开更多
关键词 SOYBEAN Heat shock proteins DNAJ salt stress alkali stress
下载PDF
Effects of salt and alkali stress on Reaumuria soongorica germination 被引量:2
12
作者 Fang Wang HongLang Xiao +1 位作者 XiaoMei Peng Shang Li 《Research in Cold and Arid Regions》 CSCD 2017年第2期158-166,共9页
Seed germination and early seedling growth are crucial stages for plant establishment. Two neutral(Na Cl and Na2SO4) and two alkali(Na HCO3 and Na2CO3) salts were selected to investigate their effects on germination a... Seed germination and early seedling growth are crucial stages for plant establishment. Two neutral(Na Cl and Na2SO4) and two alkali(Na HCO3 and Na2CO3) salts were selected to investigate their effects on germination and recovery responses in Reaumuria soongorica. Results show that both salt types significantly reduced germination and radicle elongation. The rate of germination and emergence of R. soongorica seeds continuously decreased as salinity increased, and the time to achieve maximum germination rate was delayed. The speed of seed germination dropped rapidly as salt concentration increased.Alkaline salts restricted the germination rate of R. soongorica seeds, and stresses resulting from alkaline salts and high concentrations of neutral salts resulted in many deformed seedlings. The length of the radicle and germ decreased with increasing salt concentration, but certain concentrations of salt and increased p H promoted germ growth. The results of regression analysis show that salt concentration was the dominant factor inhibiting R. soongorica seed germination rate. Salinity, buffering capacity, and p H all affected embryo growth, but salinity had the most pronounced effect. Seed viability under highly saline conditions appears to be a better indicator of adaptation to saline environments than seed germination under saline conditions. 展开更多
关键词 alkali stress salt stress GERMINATION RECOVERY Reaumuria soongorica
下载PDF
Effects of salt-alkali stress on active oxygen metabolism in roots of Spiraea × bumalda 'Gold Mound' and Spiraea × bumalda 'Gold Flame' 被引量:2
13
作者 YAN Yong-qing CHE Dai-di SHI Xi-chan LIU Xing-liang 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第1期59-64,共6页
Under artificially-simulated complex salt-alkali stress, the levels of active oxygen metabolism in roots were studied using three-year-old cutting seedlings of Spiraea × bumalda ‘Gold Mound' and Spiraea × ... Under artificially-simulated complex salt-alkali stress, the levels of active oxygen metabolism in roots were studied using three-year-old cutting seedlings of Spiraea × bumalda ‘Gold Mound' and Spiraea × bumalda ‘Gold Flame'. The present study aimed at exploring the antioxidant capacity in roots of spiraeas and revealing their adaptability to salt-alkali stress. Results indicate that the oxygen free radicals contents, electrolyte leakage rates and MDA contents in roots of Spiraea × bumalda 'Gold Mound' and Spiraea × bumalda 'Gold Flame' show an increasing tendency with the increases of the salinity and pH value, whereas the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) all increased firstly and then decreased. With the increase in intensity of salt-alkali stress, the CAT activity in roots of Spiraea × bumalda ‘Gold Flame' is higher and the increasing extents in the oxygen free radicals contents, electrolyte leakage rates as well as MDA contents are lower compared with Spiraea × bumalda ‘Gold Mound', indicating that Spiraea × bumalda ‘Gold Flame' has a stronger antioxidant capacity. 展开更多
关键词 active oxygen metabolism ROOTS salt-alkali stress Spiraea× bumalda ‘Gold Mound' Spiraea × bumalda ‘Gold Flame'
下载PDF
Promotion by 5-Aminolevulinic Acid of Germination of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) Seeds Under Salt Stress 被引量:55
14
作者 Liang-Ju WANG Wei-Bing JIANG Hui LIU Wei-Qin LIU Lang KANG Xi-Lin HOU 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第9期1084-1091,共8页
The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to 150 mm... The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to 150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress. These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme, which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme. 展开更多
关键词 5-aminolevulinic acid (ALA) GERMINATION HEME PAKCHOI respiration salt stress.
原文传递
Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress 被引量:13
15
作者 Jun LIU Ming-Yi JIANG Yi-Feng ZHOU You-Liang LIU 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第11期1326-1334,共9页
It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production. In the present s... It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production. In the present study, the relationships between salt-induced ABA and polyamine accumulation were inves- tigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and α- difluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H^+-ATPase and H^+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt. 展开更多
关键词 abscisic acid maize (Zea mays) POLYAMINE salt stress.
原文传递
Effects of neutral salt and alkali on ion distributions in the roots,shoots,and leaves of two alfalfa cultivars with differing degrees of salt tolerance 被引量:8
16
作者 WANG Xiao-shan REN Hai-long +2 位作者 WEI Zen-wu WANG Yun-wen REN Wei-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1800-1807,共8页
The effects of neutral salt and alkali on the ion distribution were investigated in two alfalfa (Medicago sativa L.) cultivars, including Zhongmu 1, a high salt-tolerant cultivar, and Algonquin, a low salt-tolerant ... The effects of neutral salt and alkali on the ion distribution were investigated in two alfalfa (Medicago sativa L.) cultivars, including Zhongmu 1, a high salt-tolerant cultivar, and Algonquin, a low salt-tolerant cultivar. The alkali stress expressed more serious growth inhibition than the neutral salt stress at the same Na+ concentration. Compared with Algonquin, Zhongmu 1 did not exhibit a higher alkali tolerance under the Na2CO3-NaHCO3 treatment with the low Na+ concentration (50 mmol L-l). The alkali increased the accumulation of Na+, Ca2+, and Mg2+ in the root and changed the Ca2+ and Mg2+ balance in the entire alfalfa plant. The salt and alkali stresses decreased the K+ and Fe3+ contents of the roots and leaves, the root Mn2+ content, and the shoot Zn2+ content, but they increased the Fe3+ accumulation of the shoots, the shoot and leaf Cu2+ contents, and the leaf Zn2+ content in both alfalfa cultivars. Based on the results obtained under the conditions of this experiment, we found that the salt and alkali stresses reduced the plant growth in both alfalfa cultivars, while the alkali caused a stronger stress than the neutral salt in alfalfa. Thus, we conclude that under hydroponic conditions, the deleterious effects of the alkali on plants are due to the distribution change of some trophic ion balance in the roots, shoots, and leaves of the plants by causing of Na+, CO3^2-, and/or HCO3- stresses. 展开更多
关键词 ALFALFA ion distribution neutral salts alkali stress
下载PDF
Comparative Transcriptome Profiling of Glycine soja Roots Under Salinity and Alkalinity Stresses Using RNA-seq 被引量:1
17
作者 Zhu Yan-ming Li Ji-na +6 位作者 DuanMu Hui-zi Yin kui-de Cheng Shu-fei Chen Chao Cao Lei Duan Xiang-bo Chen Ran-ran 《Journal of Northeast Agricultural University(English Edition)》 CAS 2018年第3期29-43,共15页
Saline-alkaline stress can dramatically inhibit plant growth and limit crop production. Wild soybean (Glycine soja) is a crop that adapts well to such environmental stresses. In this study, RNA-sequencing technology... Saline-alkaline stress can dramatically inhibit plant growth and limit crop production. Wild soybean (Glycine soja) is a crop that adapts well to such environmental stresses. In this study, RNA-sequencing technology was used to analyze the transcriptome profles of G. soja roots subjected to 50 mmol·L^-1 NaHCO3 and 150 mmol·L^-1 NaCl treatments. Totally, 2 125 differentially-expressed genes (DEGs) after NaCl treatment and 1 839 DEGs after NaHCO3 treatment were identifed. The top 14 DEGs revealed by RNA-seq were analyzed using qRT-PCR (quantitative real-time polymerase chain reaction). Gene ontology (GO) annotation showed that most of DEGs under salt and alkali stresses were enriched in "metabolic process", "catalytic activity" and "binding" terms. To search for transcription factors (TFs) among DEGs, the data were screened against TF database PlantTFDB, and it was found that fve TF families, Apetala2/ethylene-responsive element binding proteins (AP2-EREBP), V-myb avian myeloblastosis viral oncogene homolog (MYB), WRKYGQK and Zinc fnger motif (WRKY), NAM, ATAF1/2, CUC1/2 (NAC) and Cys2/His2 (C2H2) were involved in salt stress response. Other fve TF families, NAC, WRKY, MYB, AP2-EREBP and bZIP were involved in response to alkali stress. These two stress treatments shared NAC, WRKY, AP2-EREBP and MYB, and the only two different TFs were bZIP and C2H2. Forty-eight MYB TFs were differentially expressed under salt and alkali stresses, and most of them were up-regulated. This study provided useful information for further investigation of DEGs and TFs in response to saline and alkaline stresses and helped in understanding the molecular basis of the response of G. soja to saline and alkaline stresses. 展开更多
关键词 RNA-SEQ wild soybean salt stress alkali stress
下载PDF
Relationship Between H^+-ATPase Activity and Fluidity of Tonoplast in Barley Roots Under NaCl Stress 被引量:13
18
作者 章文华 陈沁 刘友良 《Acta Botanica Sinica》 CSCD 2002年第3期292-296,共5页
H +_ATPase activity of tonoplast in roots of Hordeum vulgare L. cv. 'Tanyin 2' (salt_tolerant cultivar) increased when the roots were exposed to 50-200 mmol/L NaCl for 2 d, and decreased when NaCl concentrati... H +_ATPase activity of tonoplast in roots of Hordeum vulgare L. cv. 'Tanyin 2' (salt_tolerant cultivar) increased when the roots were exposed to 50-200 mmol/L NaCl for 2 d, and decreased when NaCl concentration was increased to 600 mmol/L. In 'Kepin 7' (salt_sensitive cultivar), tonoplast H +_ATPase activity in roots also increased at lower levels of NaCl (50-100 mmol/L), but decreased at higher levels of NaCl (200-600 mmol/L). Tonoplast fluidity in roots of 'Tanyin 2' decreased at 50-200 mmol/L NaCl, and increased significantly at 600 mmol/L NaCl. Under salt stress, the change of tonoplast fluidity was identical with that of the ratio of unsaturated fatty acids to saturated fatty acids in tonoplast lipid of barley roots. It is proposed that the increase of tonoplast fluidity due to increased degree of unsaturation of fatty acids is one of the reasons leading to the decrease of H +_ATPase activity under higher level of NaCl stress. 展开更多
关键词 salt stress H +_ATPase membrane fluidity fatty acid composition BARLEY
下载PDF
Multiple forms of vitamin B_(6) regulate salt tolerance by balancing ROS and abscisic acid levels in maize root 被引量:1
19
作者 Chongchong Lu Yuan Tian +14 位作者 Xuanxuan Hou Xin Hou Zichang Jia Min Li Mingxia Hao Yanke Jiang Qingbin Wang Qiong Pu Ziyi Yin Yang Li Baoyou Liu Xiaojing Kang Guangyi Zhang Xinhua Ding Yinggao Liu 《Stress Biology》 2022年第1期197-210,共14页
Salt stress causes osmotic stress,ion toxicity and oxidative stress,inducing the accumulation of abscisic acid(ABA)and excessive reactive oxygen species(ROS)production,which further damage cell structure and inhibit t... Salt stress causes osmotic stress,ion toxicity and oxidative stress,inducing the accumulation of abscisic acid(ABA)and excessive reactive oxygen species(ROS)production,which further damage cell structure and inhibit the development of roots in plants.Previous study showed that vitamin B_(6)(VB_(6))plays a role in plant responses to salt stress,however,the regulatory relationship between ROS,VB_(6) and ABA under salt stress remains unclear yet in plants.In our study,we found that salt stress-induced ABA accumulation requires ROS production,in addition,salt stress also promoted VB_(6)(including pyridoxamine(PM),pyridoxal(PL),pyridoxine(PN),and pyridoxal 5′-phosphate(PLP))accumulation,which involved in ROS scavenging and ABA biosynthesis.Furthermore,VB_(6)-deficient maize mutant small kernel2(smk2)heterozygous is more susceptible to salt stress,and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress,interestingly,which can be restored by exogenous PN and PLP,respec-tively.According to these results,we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress,respectively,it laid a foundation for VB_(6) to be better applied in crop salt resistance than ABA. 展开更多
关键词 Vitamin B_(6) Abscisic acid Reactive oxygen species salt stress smk2
原文传递
Lithium extraction from hard rock lithium ores(spodumene,lepidolite,zinnwaldite,petalite):Technology,resources,environment and cost 被引量:7
20
作者 Tian-ming Gao Na Fan +1 位作者 Wu Chen Tao Dai 《China Geology》 CAS CSCD 2023年第1期137-153,共17页
Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of e... Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process. 展开更多
关键词 Lithium ore Lithium extraction Comprehensive utilization acid method alkali method salt roasting method Chlorination method Mineral exploration engineering
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部