The kinetics of asymmetric production of R-(-)-mandelic acid (R-MA) from phenylglyoxylic acid (PGA) catalyzed by Saccharomyces cerevisiae sp. strain FD11b was studied by fed-batch cultures. The concentrations of...The kinetics of asymmetric production of R-(-)-mandelic acid (R-MA) from phenylglyoxylic acid (PGA) catalyzed by Saccharomyces cerevisiae sp. strain FD11b was studied by fed-batch cultures. The concentrations of glucose and PGA were controlled respectively with a dual feeding system. When the electron donor glucose was supplied at the rate of 0.0833mmol·gdw^-1·h^-1, the specific production rate (qp) and the enantiomeric excess of R-MA reached the maximum 0.353mmol·gdw^-1·h^-1 and 97.1%, respectively. The apparent reduction activity of yeast FD 11 b was obviously affected by both substrate PGA and product MA. The qp value reached the maximum 0.36-0.38mmol·gdw^-1·h^-1 when the PGA concentration was controlled between 25 and 35mmol·L^-1. The obvious substrate inhibition of bioconversion was observed at the PGA concentrations higher than 40mmol·L^-1. The accumulation of product MA also caused a severe feed-back inhibition for its production when the product concentration was above 60mmol·L^-1. The kinetic model with the inhibition effect of both substrate and product was simulated by a computer-based least-square arithrnatic. The established kinetic model was in good agreement with the experimental data.展开更多
基金Supported by the Natural Science Foundation of Fujian Province (No.E0310019) and Key Project of Science and Technology of Fujian Province (No.2003H023).
文摘The kinetics of asymmetric production of R-(-)-mandelic acid (R-MA) from phenylglyoxylic acid (PGA) catalyzed by Saccharomyces cerevisiae sp. strain FD11b was studied by fed-batch cultures. The concentrations of glucose and PGA were controlled respectively with a dual feeding system. When the electron donor glucose was supplied at the rate of 0.0833mmol·gdw^-1·h^-1, the specific production rate (qp) and the enantiomeric excess of R-MA reached the maximum 0.353mmol·gdw^-1·h^-1 and 97.1%, respectively. The apparent reduction activity of yeast FD 11 b was obviously affected by both substrate PGA and product MA. The qp value reached the maximum 0.36-0.38mmol·gdw^-1·h^-1 when the PGA concentration was controlled between 25 and 35mmol·L^-1. The obvious substrate inhibition of bioconversion was observed at the PGA concentrations higher than 40mmol·L^-1. The accumulation of product MA also caused a severe feed-back inhibition for its production when the product concentration was above 60mmol·L^-1. The kinetic model with the inhibition effect of both substrate and product was simulated by a computer-based least-square arithrnatic. The established kinetic model was in good agreement with the experimental data.