TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal...TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brφnsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.展开更多
In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, ...In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.展开更多
Ce0.5Zr0.5O2 solid solution was successfully synthesized using cerium nitrate, zirconium nitrate, and urea as raw materials by the microwave irradiation method and characterized by X-ray diffraction, fluorescence spec...Ce0.5Zr0.5O2 solid solution was successfully synthesized using cerium nitrate, zirconium nitrate, and urea as raw materials by the microwave irradiation method and characterized by X-ray diffraction, fluorescence spectrum, transmission electron microscopy, and infrared spectrum. Its acid catalytic activity was evaluated in the esterification reaction of acetic acid and n-butyl alcohol. The results show that Ce0.5Zr0.5O2 solid solution has cubic fluorite structure, and its particle diameter is in the nanometer scale. As a sort of solid acid, it possesses a higher acid catalytic activity and can be easily separated from reaction liquids. It can be used for several times, and basically, its activity keeps constant. The proton acid sites and Lewis acid sites exist in the structure of Ce0.5Zr0.5O2 solid solution.展开更多
In the present work, we reported a novel route for the conversion of lignocellulosic biomass (sawdust) to a high-value chemical of benzoic acid under atmospheric pressure. The trans- formation involved the catalytic...In the present work, we reported a novel route for the conversion of lignocellulosic biomass (sawdust) to a high-value chemical of benzoic acid under atmospheric pressure. The trans- formation involved the catalytic pyrolysis of sawdust into aromatics, the decomposition of heavier alkylaromatics to toluene, and the liquid-phase oxidation of toluene-rich aromatics to benzoic acid. The production of the desired benzoic acid from the sawdust-derived aro- matics, with the benzoic acid selectivity of 85.1 C-mol% and nearly complete conversion of toluene, was achieved using the MnO2/NHPI catalyst at 100 ℃ for 5 h. The in uence of adding methanol on the catalytic conversion of sawdust to the core intermediate of toluene was also investigated in detail.展开更多
The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO_4)_2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 1 h^(-1) g-cat^(-1...The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO_4)_2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 1 h^(-1) g-cat^(-1). the CPC-12 conversion at 310C over Ti(SO_4)_2 calcined at 350C remained about 98.5% during 360 h on stream. and the selectivity to by-products remained zero. The findings enlarged the scope of traditional catalyst systems for the CFCs decomposition.展开更多
3,6-Diarylidene-2,5-piperazinediones(2)and 3-alkylidene-6-arylidene-2,5-piperazfnediones (6)were synthesized from diacetyl-2,5-piperazinedione(1)under solid-liquid phase transfer catalytic conditions.2 could be easily...3,6-Diarylidene-2,5-piperazinediones(2)and 3-alkylidene-6-arylidene-2,5-piperazfnediones (6)were synthesized from diacetyl-2,5-piperazinedione(1)under solid-liquid phase transfer catalytic conditions.2 could be easily convered to a-amino acid by reducing with zinc powder and hydrolyzing with concentrated hydrochloric acid.The effect of different phase transfer catalysts and reaction con- ditions were studied.展开更多
HZSM-5, Al_2O_3, TiO_2 and SiO_2 supported CeO_2-ZrO_2-CrO_x catalysts were prepared by deposition-precipitation method and tested for deep catalytic oxidation of 1,2-dichloroethane(DCE), as one of the common chlori...HZSM-5, Al_2O_3, TiO_2 and SiO_2 supported CeO_2-ZrO_2-CrO_x catalysts were prepared by deposition-precipitation method and tested for deep catalytic oxidation of 1,2-dichloroethane(DCE), as one of the common chlorinated organic pollutants. All the catalysts were characterized by means of N_2 adsorption-desorption, X-ray photoelectron spectroscopy(XPS), ammonia-temperatureprogrammed desorption(NH_3-TPD) and hydrogen temperature-programmed reduction(H2-TPR). The characterization results revealed that there was strongly synergistic effect between the oxidizability of CZCr species and the acidity of supports, which obviously promoted the catalytic activity for DCE degradation. 20% CZCr/HZSM-5 showed the highest activity and good durability during the long-term continuous test. The catalytic activity decreased in the order: 20%CZCr/HZSM-5〉CZCr〉20%CZCr/TiO_2〉20%CZCr/Al_2O_3〉20%CZCr/SiO_2.展开更多
A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media.The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N_2 p...A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media.The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N_2 physisorption,temperature-programmed desorption of NH_3(NH_3-TPD) and nuclear magnetic resonance(NMR) measurements.The results showed that a certain concentration of F- anions promoted the nucleation and crystallization of H-SAPO-34.The H-SAPO-34 synthesized in the fluoride media showed high crystallinity,uniform particle size distribution,large specific surface area and pore volume,and enhanced acidity.Therefore,Cu/SAPO-34 based on the fluoride-assisted zeolite showed a broadened temperature window for the selective catalytic reduction of NO by NH_3(NH_3-SCR) reaction due to the enhanced acidity of the zeolite and the improved dispersion of copper species.展开更多
An intensified oxidative acid leaching of copper–cadmium-bearing slag featuring using high-efficient oxygen carrier, such as activated carbon, was investigated to achieve high leaching rate of valuable metals. The ef...An intensified oxidative acid leaching of copper–cadmium-bearing slag featuring using high-efficient oxygen carrier, such as activated carbon, was investigated to achieve high leaching rate of valuable metals. The effects of leaching variables, including agitation rate, sulfuric acid concentration, temperature, slag particle size, activated carbon and cupric ion concentration, were examined. It is found that leaching rates of cadmium and zinc both exceed 99 % in a very short time, but for copper, leaching rate of 99 % is achieved under the optimized leaching parameters, which are agitation rate of 100 r·min^(-1), sulfuric acid concentration of 15 wt%, leaching temperature of 80 ℃, slag particle size of 48–75 lm, activated carbon concentration of 3 g·L^(-1),liquid-to-solid ratio of 4:1, oxygen flow rate of 0.16 L·min^(-1),and leaching time of 60 min. The macro-leaching kinetics of copper metal was analyzed, and it is concluded that the inner diffusion is the controlling step, with apparent activation energy of 18.6 kJ·mol^(-1). The leaching solution with pH value of 2–4 can be designed to selectively extract valuable metals without neutralization, and the leaching residue can be treated by prevailing Pb smelting process.展开更多
CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructure...CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructured CeO2 materials via a solvothermal method. Organic acid-assisted synthesis and inorganic acid post-treatment were used to adjust the Ce02 microstructures. The size of the 3D micro/nanostructures could be controlled in the range from 180nm to 1.5 μm and the surface morphology changed from rough to smooth with the use of different organic acids. The CeO2 synthesized with acetic acid featured a hierarchical porosity and showed good performance for toluene catalytic combustion: a T50 of 187 ℃ and a T90 of 195 ℃. Moreover, the crystallite size, textural properties, and surface chemical states could be tuned by inorganic acid modification. After treatment with HNO3, the modified CeO2 materials exhibited improved catalytic activity, with a T50 of-175 ℃ and a T90 of -187 ℃. We concluded that the toluene combustion activity is related to the porosity and the amount of surface active oxygen of the CeO2. Both these features can be tuned by the co-work of organic and inorganic acids.展开更多
Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied in...Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst Ir Cp*Cl_2 bpym for FA dehydrogenation. The turnover frequency(TOF) of the catalyst for FA dehydrogenation is as high as7150 h^(-1)at 50°C, and is up to 144,000 h^(-1)at 90°C. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell(PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen.展开更多
文摘TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brφnsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.
文摘In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.
基金This work was financially supported by the Teaching Reform Study Program of Ludong University (No.Y0715).
文摘Ce0.5Zr0.5O2 solid solution was successfully synthesized using cerium nitrate, zirconium nitrate, and urea as raw materials by the microwave irradiation method and characterized by X-ray diffraction, fluorescence spectrum, transmission electron microscopy, and infrared spectrum. Its acid catalytic activity was evaluated in the esterification reaction of acetic acid and n-butyl alcohol. The results show that Ce0.5Zr0.5O2 solid solution has cubic fluorite structure, and its particle diameter is in the nanometer scale. As a sort of solid acid, it possesses a higher acid catalytic activity and can be easily separated from reaction liquids. It can be used for several times, and basically, its activity keeps constant. The proton acid sites and Lewis acid sites exist in the structure of Ce0.5Zr0.5O2 solid solution.
文摘In the present work, we reported a novel route for the conversion of lignocellulosic biomass (sawdust) to a high-value chemical of benzoic acid under atmospheric pressure. The trans- formation involved the catalytic pyrolysis of sawdust into aromatics, the decomposition of heavier alkylaromatics to toluene, and the liquid-phase oxidation of toluene-rich aromatics to benzoic acid. The production of the desired benzoic acid from the sawdust-derived aro- matics, with the benzoic acid selectivity of 85.1 C-mol% and nearly complete conversion of toluene, was achieved using the MnO2/NHPI catalyst at 100 ℃ for 5 h. The in uence of adding methanol on the catalytic conversion of sawdust to the core intermediate of toluene was also investigated in detail.
文摘The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO_4)_2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 1 h^(-1) g-cat^(-1). the CPC-12 conversion at 310C over Ti(SO_4)_2 calcined at 350C remained about 98.5% during 360 h on stream. and the selectivity to by-products remained zero. The findings enlarged the scope of traditional catalyst systems for the CFCs decomposition.
基金Project supported by the National Natural Science Foundation of China and Modern Analysis Centre of Nanjing University.
文摘3,6-Diarylidene-2,5-piperazinediones(2)and 3-alkylidene-6-arylidene-2,5-piperazfnediones (6)were synthesized from diacetyl-2,5-piperazinedione(1)under solid-liquid phase transfer catalytic conditions.2 could be easily convered to a-amino acid by reducing with zinc powder and hydrolyzing with concentrated hydrochloric acid.The effect of different phase transfer catalysts and reaction con- ditions were studied.
基金Project supports from National Nature Science Foundation of China(21177110)
文摘HZSM-5, Al_2O_3, TiO_2 and SiO_2 supported CeO_2-ZrO_2-CrO_x catalysts were prepared by deposition-precipitation method and tested for deep catalytic oxidation of 1,2-dichloroethane(DCE), as one of the common chlorinated organic pollutants. All the catalysts were characterized by means of N_2 adsorption-desorption, X-ray photoelectron spectroscopy(XPS), ammonia-temperatureprogrammed desorption(NH_3-TPD) and hydrogen temperature-programmed reduction(H2-TPR). The characterization results revealed that there was strongly synergistic effect between the oxidizability of CZCr species and the acidity of supports, which obviously promoted the catalytic activity for DCE degradation. 20% CZCr/HZSM-5 showed the highest activity and good durability during the long-term continuous test. The catalytic activity decreased in the order: 20%CZCr/HZSM-5〉CZCr〉20%CZCr/TiO_2〉20%CZCr/Al_2O_3〉20%CZCr/SiO_2.
基金financial support by the Ministry of Science and Technology,China(No.2013AA065302)the National Natural Science Foundation of China(No.51372137)+1 种基金the State Key Laboratory of Solid Waste Reuse for Building Materials(No.SWR-2013-003)the financial support from the Strategic Emerging Industry Development Funds of Shenzhen(No.JCYJ20140417115840287)
文摘A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media.The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N_2 physisorption,temperature-programmed desorption of NH_3(NH_3-TPD) and nuclear magnetic resonance(NMR) measurements.The results showed that a certain concentration of F- anions promoted the nucleation and crystallization of H-SAPO-34.The H-SAPO-34 synthesized in the fluoride media showed high crystallinity,uniform particle size distribution,large specific surface area and pore volume,and enhanced acidity.Therefore,Cu/SAPO-34 based on the fluoride-assisted zeolite showed a broadened temperature window for the selective catalytic reduction of NO by NH_3(NH_3-SCR) reaction due to the enhanced acidity of the zeolite and the improved dispersion of copper species.
基金financially supported by the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period of China(No.2012BAC12B01)the Major Scientific and Technological Special Project of Hunan Province,China(No.2012FJ1010)。
文摘An intensified oxidative acid leaching of copper–cadmium-bearing slag featuring using high-efficient oxygen carrier, such as activated carbon, was investigated to achieve high leaching rate of valuable metals. The effects of leaching variables, including agitation rate, sulfuric acid concentration, temperature, slag particle size, activated carbon and cupric ion concentration, were examined. It is found that leaching rates of cadmium and zinc both exceed 99 % in a very short time, but for copper, leaching rate of 99 % is achieved under the optimized leaching parameters, which are agitation rate of 100 r·min^(-1), sulfuric acid concentration of 15 wt%, leaching temperature of 80 ℃, slag particle size of 48–75 lm, activated carbon concentration of 3 g·L^(-1),liquid-to-solid ratio of 4:1, oxygen flow rate of 0.16 L·min^(-1),and leaching time of 60 min. The macro-leaching kinetics of copper metal was analyzed, and it is concluded that the inner diffusion is the controlling step, with apparent activation energy of 18.6 kJ·mol^(-1). The leaching solution with pH value of 2–4 can be designed to selectively extract valuable metals without neutralization, and the leaching residue can be treated by prevailing Pb smelting process.
基金This work was financially supported by the Natural Science Foundation of China (21576054), the Scientific Project of Guangdong Province (2014A010106030, 2016A010104017,2016B020241003), and the Foundation of Higher Education of Guangdong Province (201 SICFSCX027) of China.
文摘CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructured CeO2 materials via a solvothermal method. Organic acid-assisted synthesis and inorganic acid post-treatment were used to adjust the Ce02 microstructures. The size of the 3D micro/nanostructures could be controlled in the range from 180nm to 1.5 μm and the surface morphology changed from rough to smooth with the use of different organic acids. The CeO2 synthesized with acetic acid featured a hierarchical porosity and showed good performance for toluene catalytic combustion: a T50 of 187 ℃ and a T90 of 195 ℃. Moreover, the crystallite size, textural properties, and surface chemical states could be tuned by inorganic acid modification. After treatment with HNO3, the modified CeO2 materials exhibited improved catalytic activity, with a T50 of-175 ℃ and a T90 of -187 ℃. We concluded that the toluene combustion activity is related to the porosity and the amount of surface active oxygen of the CeO2. Both these features can be tuned by the co-work of organic and inorganic acids.
基金financial support granted by Ministry of Science and Technology of China(Nos.2016YFE0105700,2016YFA0200700)the National Natural Science Foundation of China(Nos.21373264,21573275)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20150362)Suzhou Institute of Nano-tech and Nano-bionics(No.Y3AAA11004)Thousand Youth Talents Plan(No.Y3BQA11001)
文摘Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst Ir Cp*Cl_2 bpym for FA dehydrogenation. The turnover frequency(TOF) of the catalyst for FA dehydrogenation is as high as7150 h^(-1)at 50°C, and is up to 144,000 h^(-1)at 90°C. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell(PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen.