Acute interruption of arterial blood flow to the extremities is often associated with significant morbidity and mortality. Broad spectrum mitogenic and non mitogenic activities of FGFs inspired us to study its protect...Acute interruption of arterial blood flow to the extremities is often associated with significant morbidity and mortality. Broad spectrum mitogenic and non mitogenic activities of FGFs inspired us to study its protecting effects on tissue injuries in ischemia reperfusion condition. We found that systemic administration of aFGF after reperfusion onset prevented severe skeletal muscle injuries. In rats treated with aKGF, the tissue edema was reduced significantly, the tissue viability was increased, and the muscle fibers contained more succinate dehydrogenase (SDH) and adenosine triphosphatasc (ATPase). The pathological results supported the concept of improved prevention with aFGF treatment. The possible tissue protection by aFGF may come from its ability to regulate the concentration of evtra- and intracellular calcium ion. Besides, it may moderate other Ca2+ dependent enzyme conversion processes. Also, it may take part in the vascular tone regulation under ischemia and reperfusion conditions. These results suggest further study of tissue ischemia prevention with FGF and its possible mechanisms in the future.展开更多
文摘Acute interruption of arterial blood flow to the extremities is often associated with significant morbidity and mortality. Broad spectrum mitogenic and non mitogenic activities of FGFs inspired us to study its protecting effects on tissue injuries in ischemia reperfusion condition. We found that systemic administration of aFGF after reperfusion onset prevented severe skeletal muscle injuries. In rats treated with aKGF, the tissue edema was reduced significantly, the tissue viability was increased, and the muscle fibers contained more succinate dehydrogenase (SDH) and adenosine triphosphatasc (ATPase). The pathological results supported the concept of improved prevention with aFGF treatment. The possible tissue protection by aFGF may come from its ability to regulate the concentration of evtra- and intracellular calcium ion. Besides, it may moderate other Ca2+ dependent enzyme conversion processes. Also, it may take part in the vascular tone regulation under ischemia and reperfusion conditions. These results suggest further study of tissue ischemia prevention with FGF and its possible mechanisms in the future.