In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced...In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced and exaggerate during walking,and is relieved by rest.This symptom is termed by intermittent claudication.The limb ischemia also amplifies autonomic responses during exercise.In the process of pain and autonomic responses originating exercising muscle,a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses.This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle.For the sensory nerve receptors,we emphasize the role played by transient receptor potential vanilloid type 1,purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.展开更多
OBJECTIVE:To investigate the impact of electro-acupuncture at the Neiguan(PC 6) acupoint on protein and RNA expression of acid-sensing ion channel 2(ASIC2) and ASIC3 in myocardial ischemia rats.METHODS:Fifty male Spra...OBJECTIVE:To investigate the impact of electro-acupuncture at the Neiguan(PC 6) acupoint on protein and RNA expression of acid-sensing ion channel 2(ASIC2) and ASIC3 in myocardial ischemia rats.METHODS:Fifty male Sprague-Dawley rats were used,weighing(230 ± 50) g.The rats were randomized into a normal group A,model group B,Neiguan(PC 6) group C,Lieque(LU 7) group D,and A-shi points group E.There were 10 rats in each group.Rats were continuously administered 85 mg/kg intravenous isoproterenol daily to establish the model.Successfully modeled rats in groups C,D,and E were given electro-acupuncture treatment.Each group of rats was sacrificed with chloral hydrate(1 mL/100 g) intraperitoneal injection.The left ventricular myocardium was extracted and placed at- 70 ℃ until use.Western blot analysis and real-time PCR were performed to assay protein and RNA expressions of ASIC2 and ASIC3,respectively.Fold changes in RNA expression were quantified with the 2~^(-△△Ct) method.Blood samples were drawn from the aorta abdominalis and tested for creatine kinase-MB(CK-MB) and lactate dehydrogenase(LDH) levels using enzyme-linked immunosorbent assay.RESULTS:Myocardial ischemia rats given electro-acupuncture at the Neiguan(PC 6) acupoint had significantly lower protein and RNA expression of ASIC2 and ASIC3,and CK-MB and LDH levels,compared with model rats(P < 0.01).CONCLUSION:Electro-acupuncture at the Neiguan(PC 6) acupoint can not only decrease the protein and RNA expression of ASIC2 and ASIC3,but also inhibit the opening of ASICs and reduce the cardiomyocyte damage in myocardial ischemia rats.展开更多
基金This work was supported by the National Institutes of Health,No.NIH P01 HL134609 and R01 HL141198(to JL).
文摘In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced and exaggerate during walking,and is relieved by rest.This symptom is termed by intermittent claudication.The limb ischemia also amplifies autonomic responses during exercise.In the process of pain and autonomic responses originating exercising muscle,a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses.This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle.For the sensory nerve receptors,we emphasize the role played by transient receptor potential vanilloid type 1,purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
基金Supported by National Essence Basic Research and Development 973 Program(the Effects of Meridian Specific Target Organ Response to Biological Basic Research,No.2012CB518503)
文摘OBJECTIVE:To investigate the impact of electro-acupuncture at the Neiguan(PC 6) acupoint on protein and RNA expression of acid-sensing ion channel 2(ASIC2) and ASIC3 in myocardial ischemia rats.METHODS:Fifty male Sprague-Dawley rats were used,weighing(230 ± 50) g.The rats were randomized into a normal group A,model group B,Neiguan(PC 6) group C,Lieque(LU 7) group D,and A-shi points group E.There were 10 rats in each group.Rats were continuously administered 85 mg/kg intravenous isoproterenol daily to establish the model.Successfully modeled rats in groups C,D,and E were given electro-acupuncture treatment.Each group of rats was sacrificed with chloral hydrate(1 mL/100 g) intraperitoneal injection.The left ventricular myocardium was extracted and placed at- 70 ℃ until use.Western blot analysis and real-time PCR were performed to assay protein and RNA expressions of ASIC2 and ASIC3,respectively.Fold changes in RNA expression were quantified with the 2~^(-△△Ct) method.Blood samples were drawn from the aorta abdominalis and tested for creatine kinase-MB(CK-MB) and lactate dehydrogenase(LDH) levels using enzyme-linked immunosorbent assay.RESULTS:Myocardial ischemia rats given electro-acupuncture at the Neiguan(PC 6) acupoint had significantly lower protein and RNA expression of ASIC2 and ASIC3,and CK-MB and LDH levels,compared with model rats(P < 0.01).CONCLUSION:Electro-acupuncture at the Neiguan(PC 6) acupoint can not only decrease the protein and RNA expression of ASIC2 and ASIC3,but also inhibit the opening of ASICs and reduce the cardiomyocyte damage in myocardial ischemia rats.