The Silurian Kepingtage Formation in Tazhong area is regarded as an acid-sensitive hydrocarbon reservoir. However, formation mechanism of acid-sensitive of the reservoir cannot be interpreted by the existing acid-sens...The Silurian Kepingtage Formation in Tazhong area is regarded as an acid-sensitive hydrocarbon reservoir. However, formation mechanism of acid-sensitive of the reservoir cannot be interpreted by the existing acid-sensitive evaluation criterion based on damage rate. The contents of acid-sensitive minerals illustrated by bulk-rock XRD, scanning electron microscopy and clay mineral composition analysis exert the dominant control on acid-sensitive flow testing of the reservoir. The ironbearing minerals(including pyrite cements and chlorite cements) mainly deteriorate reservoir quality, while the iron-free minerals(including calcite cements and dolomite cements) mainly improve permeability. The permeability variation of the tested samples is controlled by the relative content of two acid-sensitive minerals. On the basis of newly established sensitivity mechanism and its influence on permeability, the corresponding ion(Fe^(2+)) stabilizer was added to the acidizing fluids during the acidification reconstruction, which inhibited the negative factors of acid-sensitive minerals and improved the target layer quality effectively.展开更多
The sensitivity of a large number of variable charge soils to acid rain was evaluated through examiningpH-H_2SO_4 input curves. Two derivative parameters, the consumption of hydrogen ions by the soil and theacidtolera...The sensitivity of a large number of variable charge soils to acid rain was evaluated through examiningpH-H_2SO_4 input curves. Two derivative parameters, the consumption of hydrogen ions by the soil and theacidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to PH 3.5 in a 0.00lmolLi ̄(-1) Ca(NO_3)_2 solution, were used. The sensitivity of variable charge soils was higher than that of constantcharge soils, due to the predominance of kaolinite in clay mineralogical composition. Among these soils thesensitivity was generally of the order lateritic red soil >red soil >latosol. For a given type of soil within thesame region the sensitivity was affected by parent material, due to differences in clay minerals and texture.The sensitivity of surface soil may be lower or higher than that of subsoil, depending on whether organicmatter or texture plays the dominant role in determining the buffering capacity. Paddy soils consnmedmore acid within lower range of acid input when compared with upland soils, due to the presence of moreexchangeable bases, but consumed less acid within higher acid input range, caused by the decrease in claycontent.展开更多
Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for...Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.展开更多
Comprehensive Summary Many industries are plagued by economic losses and product failures caused by counterfeit goods.Therefore,advanced anti-counterfeiting techniques are continuously needed.In this study,we construc...Comprehensive Summary Many industries are plagued by economic losses and product failures caused by counterfeit goods.Therefore,advanced anti-counterfeiting techniques are continuously needed.In this study,we constructed a series of acid-base sensitive cyclic chalcone dyes A—F by modifying different electron-donating groups.Differences in acid sensitivity of different structures are well rationalised by NMR and theoretical calculations.Aniline is difficult to protonate than fatty amines,so there is a difference in fluorescence.Hiding and anti-counterfeiting of information is achieved by this phenomenon.Powder X and Y are the anti-counterfeit fluorescent powder containing montmorillonite and cyclic chalcone,which have orange fluorescence and the very similar appearance.However,under the influence of acid the Powder X containing triphenylamine modified cyclic chalcone shows red shifted fluorescence and Powder Y containing morpholino and diethylamino groups modified cyclic chalcone shows blue shifted fluorescence.Therefore,the anti-counterfeiting strategy based on cyclic chalcone is not only limited to UV-irradiated fluorescence development,but also has more colorization and pattern variations with the aid of acid developer.Data encryption and decryption of numbers,English alphabets and Chinese characters have been realized using A—F,which have great potential for practical applications.展开更多
Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability.Calcium-based materials can also deliver contrast agents,which can ...Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability.Calcium-based materials can also deliver contrast agents,which can enhance real-time imaging and exert a Ca^(2+)-interfering therapeutic effect.Based on these characteristics,amorphous calcium carbonate(ACC),as a brunch of calcium-based biomaterials,has the potential to become a widely used biomaterial.Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However,the standalone presence of ACC is unstable in vivo.Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination.ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo,such as Ca^(2+) with an immune-regulating ability and CO_(2) with an imaging-enhancing ability.Owing to these characteristics,ACC has been studied for selfsacrificing templates of carrier construction,targeted delivery of oncology drugs,immunomodulation,tumor imaging,tissue engineering,and calcium supplementation.Emphasis in this paper has been placed on the origin,structural features,and multiple applications of ACC.Meanwhile,ACC faces many challenges in clinical translation,and long-term basic research is required to overcome these challenges.We hope that this study will contribute to future innovative research on ACC.展开更多
基金supported by the National Science and Technology Major Project of China(Grant No.2017ZX05008003-050)the PetroChina Innovation Foundation(Grant No.2016D-5007-0104)+1 种基金the Yangtze Youth Talents Fund(Grant No.2015cqr08)the Yangtze Fund for Youth Teams of Science and Technology Innovation(Grant No.2015cqt04)
文摘The Silurian Kepingtage Formation in Tazhong area is regarded as an acid-sensitive hydrocarbon reservoir. However, formation mechanism of acid-sensitive of the reservoir cannot be interpreted by the existing acid-sensitive evaluation criterion based on damage rate. The contents of acid-sensitive minerals illustrated by bulk-rock XRD, scanning electron microscopy and clay mineral composition analysis exert the dominant control on acid-sensitive flow testing of the reservoir. The ironbearing minerals(including pyrite cements and chlorite cements) mainly deteriorate reservoir quality, while the iron-free minerals(including calcite cements and dolomite cements) mainly improve permeability. The permeability variation of the tested samples is controlled by the relative content of two acid-sensitive minerals. On the basis of newly established sensitivity mechanism and its influence on permeability, the corresponding ion(Fe^(2+)) stabilizer was added to the acidizing fluids during the acidification reconstruction, which inhibited the negative factors of acid-sensitive minerals and improved the target layer quality effectively.
文摘The sensitivity of a large number of variable charge soils to acid rain was evaluated through examiningpH-H_2SO_4 input curves. Two derivative parameters, the consumption of hydrogen ions by the soil and theacidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to PH 3.5 in a 0.00lmolLi ̄(-1) Ca(NO_3)_2 solution, were used. The sensitivity of variable charge soils was higher than that of constantcharge soils, due to the predominance of kaolinite in clay mineralogical composition. Among these soils thesensitivity was generally of the order lateritic red soil >red soil >latosol. For a given type of soil within thesame region the sensitivity was affected by parent material, due to differences in clay minerals and texture.The sensitivity of surface soil may be lower or higher than that of subsoil, depending on whether organicmatter or texture plays the dominant role in determining the buffering capacity. Paddy soils consnmedmore acid within lower range of acid input when compared with upland soils, due to the presence of moreexchangeable bases, but consumed less acid within higher acid input range, caused by the decrease in claycontent.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and2016YFB0400301the National Natural Sciences Foundation of China under Grant No 61334002the National Science and Technology Major Project
文摘Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.
基金supported by the National Natural Science Foundation of China(22377064 and 21702114)CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-12M-1-054)Youth Innovation Team Development Program of Shandong Higher Education Institutions(2022KJC004).
文摘Comprehensive Summary Many industries are plagued by economic losses and product failures caused by counterfeit goods.Therefore,advanced anti-counterfeiting techniques are continuously needed.In this study,we constructed a series of acid-base sensitive cyclic chalcone dyes A—F by modifying different electron-donating groups.Differences in acid sensitivity of different structures are well rationalised by NMR and theoretical calculations.Aniline is difficult to protonate than fatty amines,so there is a difference in fluorescence.Hiding and anti-counterfeiting of information is achieved by this phenomenon.Powder X and Y are the anti-counterfeit fluorescent powder containing montmorillonite and cyclic chalcone,which have orange fluorescence and the very similar appearance.However,under the influence of acid the Powder X containing triphenylamine modified cyclic chalcone shows red shifted fluorescence and Powder Y containing morpholino and diethylamino groups modified cyclic chalcone shows blue shifted fluorescence.Therefore,the anti-counterfeiting strategy based on cyclic chalcone is not only limited to UV-irradiated fluorescence development,but also has more colorization and pattern variations with the aid of acid developer.Data encryption and decryption of numbers,English alphabets and Chinese characters have been realized using A—F,which have great potential for practical applications.
基金supported by Beijing Nova Program(Z211100002121127 and 20220484219,China)Beijing Natural Science Foundation(L212059,China)+1 种基金Fundamental Research Funds for the Central Universities(3332021101,China)CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-1-026 and 2021-I2M-1-028,China).
文摘Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability.Calcium-based materials can also deliver contrast agents,which can enhance real-time imaging and exert a Ca^(2+)-interfering therapeutic effect.Based on these characteristics,amorphous calcium carbonate(ACC),as a brunch of calcium-based biomaterials,has the potential to become a widely used biomaterial.Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However,the standalone presence of ACC is unstable in vivo.Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination.ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo,such as Ca^(2+) with an immune-regulating ability and CO_(2) with an imaging-enhancing ability.Owing to these characteristics,ACC has been studied for selfsacrificing templates of carrier construction,targeted delivery of oncology drugs,immunomodulation,tumor imaging,tissue engineering,and calcium supplementation.Emphasis in this paper has been placed on the origin,structural features,and multiple applications of ACC.Meanwhile,ACC faces many challenges in clinical translation,and long-term basic research is required to overcome these challenges.We hope that this study will contribute to future innovative research on ACC.