To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange me...To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange membrane system for reducing CO_(2) to formic acid with a Pb±Pb SO_(4) composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism.Up to 93%Faradaic efficiency was realized when formic acid was produced by this technology.展开更多
In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda抯 sera was established by using t...In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda抯 sera was established by using two-fold dilutions of serum and 100 TCID50 of the virus. The 62 sera samples of giant pandas, which were gathered from zoos and reserve region of Sichuan Province, China were detected. The neutralization antibody titer of 1:4 was recognized as the positive criterion, 8 sera samples were detected to be positive, and the positive rate was 12.9%. The titers of neutralizing antibody ranged from 1:8 to 1:32. It was the first comprehensive investigation on neutralization antibodies against CCV in giant panda population in China. The results of study showed that the infection of CCV in giant panda population was universal, which has posed a threat to the health of giant panda. Therefore, it is incumbent on us to study safe and effective vaccines to protect giant panda against CCV infection.展开更多
Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical,...Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical, through oxidative esterification over Au-based catalysts. Detailed experimental studies showed that Au on amphoteric supports with appropriate strength and balanced ratio of acid and base sites can facilitate the desired oxidative-esterification pathway without accelerating undesired aldol-condensation or Cannizzaro reactions. In particular, hydroxyapatite (with a Ca/P ratio of 1.62) supported Au achieved 87% selectivity to methyl pyruvate at an acetol conversion of 62%.展开更多
The CD4 binding site(CD4bs) of envelope glycoprotein(Env) is an important conserved target for anti-human immunodeficiency virus type 1(HIV-1) neutralizing antibodies. Neutralizing monoclonal antibodies IgG1 b12(b12) ...The CD4 binding site(CD4bs) of envelope glycoprotein(Env) is an important conserved target for anti-human immunodeficiency virus type 1(HIV-1) neutralizing antibodies. Neutralizing monoclonal antibodies IgG1 b12(b12) could recognize conformational epitopes that overlap the CD4 bs of Env. Different virus strains, even derived from the same individual, showed distinct neutralization susceptibility to b12. We examined the key amino acid residues affecting b12 neutralization susceptibility using single genome amplification and pseudovirus neutralization assay. Eleven amino acid residues were identified that affect the sensitivity of Env to b12. Through site-directed mutagenesis, an amino acid substitution at position 182 in the V2 region of Env was confirmed to play a key role in regulating the b12 neutralization susceptibility. The introduction of V182 L to a resistant strain enhanced its sensitivity to b12 more than twofold. Correspondingly, the introduction of L182 V to a sensitive strain reduced its sensitivity to b12 more than tenfold. Amino acid substitution at positions 267 and 346 could both enhance the sensitivity to b12 more than twofold. However, no additive effect was observed when the three site mutageneses were introduced into the same strain, and the sensitivity was equivalent to the single V182 L mutation. CRF07_BC is a major circulating recombinant form of HIV-1 prevalent in China. Our data may provide important information for understanding the molecular mechanism regulating the neutralization susceptibility of CRF07_BC viruses to b12 and may be helpful for a vaccine design targeting the CD4 bs epitopes.展开更多
This paper analyzed the current situation and development trends of energy consumption and carbon emissions,and the current situation and development trend of coal consumption in China.In the context of recently estab...This paper analyzed the current situation and development trends of energy consumption and carbon emissions,and the current situation and development trend of coal consumption in China.In the context of recently established carbon peak and carbon neutralization targets,this paper put forward the main problems associated with the green and low-carbon development and utilization of coal.Five key technological innovation directions in mining were proposed,including green coal development,intelligent and efficient mining,low-carbon utilization and conversion of coal,energy conservation and emission reduction,carbon capture,utilization and storage(CCUS).Focusing on the above technological innovation directions,it is suggested to carry out three basic theories,including the theory of green efficient intelligent mining,clean and low-carbon utilization and transformation of coal,and CCUS.Meanwhile,it is proposed to develop 12 key technologies,including green coal mining and ecological environment protection,efficient coal mining and intelligent mine construction,key technologies and equipment for efficient coal processing,underground coal gasification and mining,ultra-high parameter and ultra-supercritical power generation technology,intelligent and flexible coal-fired power generation technology,new power cycle coal-fired power generation technology,the development of coal-based special fuels,coal-based bulk and specialty chemicals,energy conservation and consumption reduction,large-scale and low-cost carbon capture,CO_(2) utilization and storage.Finally,necessary measures from the governmental perspective were also proposed.展开更多
To achieve the neutralization control requirements of the radio-frequency(RF)ion microthruster(μRIT)in the‘Taiji-1’satellite mission,we proposed an active neutralization control solution that is based on the carbon...To achieve the neutralization control requirements of the radio-frequency(RF)ion microthruster(μRIT)in the‘Taiji-1’satellite mission,we proposed an active neutralization control solution that is based on the carbon nanotube field emission technology.The carbon nanotube field emission neutralizer(CNTN)has the characteristics of light weight,small size,and propellantless,which is especially suitable for the neutralization control tasks of ion microthrusters.The Institute of Mechanics,Chinese Academy of Sciences,in collaboration with Tsinghua University,has successfully developed a CNTN to meet mission requirements.On the ground,the feasibility of cooperation working betweenμRIT and CNTN was fully verified,as well as the simulation and experimental study of neutralization control strategy,which finally passed the engineering assessment test.Since the launch of‘Taiji-1’satellite on 31 August,2019,the RF ion micropropulsion system has successfully completed nearly one hundred test missions in space.The test results indicate that CNTN does not have performance degradation,and the neutralization control strategy is effective.展开更多
The neutralizing activities of eight monoclonal antibodies (MAbs) against white spot syndrome virus (WSSV) (2D2, 2B2,1D2, 1D5, 1C2, 4A1, 6A4 and 6B4) were analyzed by in vivo experiments. Gills from WSSV-infecte...The neutralizing activities of eight monoclonal antibodies (MAbs) against white spot syndrome virus (WSSV) (2D2, 2B2,1D2, 1D5, 1C2, 4A1, 6A4 and 6B4) were analyzed by in vivo experiments. Gills from WSSV-infected shrimp were homogenized and ten-fold serially diluted by PBS, and then incubated with MAbs (hybridoma culture supernatant), respectively. The mixture of WSSV and MAbs were injected into crayfish (Procambarus clarkii). After challenge, the death rates of crayfish were counted to determine the neutralizing activities of MAbs. At the same time, the mixture of myeloma culture supernatant and WSSV or PBS was served as positive or negative control, respectively. The results showed that, at each virus dilution, the mean time to death of the crayfish injected with MAb-treated virus was significantly longer than that in the positive control, though they all showed 100% mortality within 25 d, and meanwhile, few crayfish died in the negative control. Among the eight MAbs, 2D2, 2B2, 1D2 and 1D5, especially the former two, delayed the mortality significantly, and 1 C2, 4A1 and 6A4 delayed the mortality as well but not so efficiently, while MAb 6IM was efficient only when the virus concentration increased. The results indicated that the anti-WSSV MAbs can neutralize WSSV in different virus dilutions.展开更多
This study described a regime map for dry neutralization agglomeration. Based on the map, the effects of selected key parameters, such as ingredient composition, operation temperature, agitation speed, and size of Na_...This study described a regime map for dry neutralization agglomeration. Based on the map, the effects of selected key parameters, such as ingredient composition, operation temperature, agitation speed, and size of Na_2CO_3 particles, were investigated using a laboratory-scale mixer, and properties of the agglomeration product were analyzed, including particle size distribution, Hunter color, and flowability. Torque curves evolving during the process were correlated with the system flowability. Three distinguishable regimes were indicated, dry, wet, and transitional, and the agitation speed was found to have a different influence on the agglomeration process for the three regimes. Furthermore, the influence of temperature on reactive agglomeration significantly differed from that in agglomeration processes in which the binder was non-reactive.展开更多
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea...Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.展开更多
Objective:To improve the diagnosis and therapeutic effect of occurrence and development of hyponatremia and disorder of acid-base balance among patients with hepatic encephalopathy(HE) by elucidating the regularity an...Objective:To improve the diagnosis and therapeutic effect of occurrence and development of hyponatremia and disorder of acid-base balance among patients with hepatic encephalopathy(HE) by elucidating the regularity and mechanism,as well as its influence on prognosis.Methods:327 HE patients admitted to our hospital from January 1990 to June 2010 were enrolled.Meanwhile 316 patients hospitalized in the medical department of the same hospital were chosen as the control group.Patients in both groups were given the same methods to measure arterial blood gas parameters(pH value,PaCO2,[HCO3-],TCO2,BE and SaO2),blood biochemistry([Na+],[K+],[Cl-]),liver function,kidney function and blood glucose,serum sodium,and thereupon tocalculate the anion gap(AG) and the potential [HCO3-],and acid-base balance disorder.Results:Among the 327 HE patients,hyponatremia was found in 188 cases(57.4%),of whom 132 patients died(70.2%).While among the 316 patients in control group,68 presented with hyponatremia(21.5%),and 19 died(27.9%).The incidence and mortality were significantly different between the two groups(P<0.001).All the 327 patients presented with different degrees of acid-base balance disorder and 178 died(54.4%),in whom 164(50.2%) belonged to simple acid-base balance disorder and 74(45.1%) died,136(41.6%) were dual acid-base balance disorder and 80(58.8%) died,27(8.2%) were triple acid-base disturbance and 24(88.9%) died.Whereas in the control group only 83 patients(26.2%) were recognized as simple and dual acid-base balance disorder,and 18(21.7%) died.There was higher incidence of acid-base balance disorder and mortality rate in HE group than control one(P<0.001).Conclusion:Hyponatremia is valuable to judge HE patients' prognosis.The key parameters in the judgment and evaluation on acid-base balance disorder among HE patients are the change of pH values and serum electrolyte values.When pH value ≤ 7.30 or > 7.55,it generally suggests a poor prognosis.展开更多
Two dehydroabietic acid-based arylamines have been synthesized and characterized by FTIR, 1H NMR, 13C NMR, MS spectra and elemental analysis. Their spatial structures were determined by X-ray diffraction analysis. UV-...Two dehydroabietic acid-based arylamines have been synthesized and characterized by FTIR, 1H NMR, 13C NMR, MS spectra and elemental analysis. Their spatial structures were determined by X-ray diffraction analysis. UV-Vis absorption and fluorescence spectral characteristics of these compounds in methanol were investigated. Their fluorescence emission spectra in different polarity solvents were further evaluated. Fluorescent properties and structural relationship of the compounds showed that fluorescence intensity and quantum yield inversely increase with the non-coplanar degree. In addition, the solvent polarity has different effects on the fluorescence emission spectra of two compounds.展开更多
As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in thi...As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.展开更多
Cerium oxide(ceria)plays an important and fascinating role in heterogeneous catalysis as illustrated by its versatile use as a catalyst,a catalyst support,or a promotor in various oxidation and reduction reactions.Cen...Cerium oxide(ceria)plays an important and fascinating role in heterogeneous catalysis as illustrated by its versatile use as a catalyst,a catalyst support,or a promotor in various oxidation and reduction reactions.Central to these reactions is the rich defect chemistry,facile redox capability,and unusual acid-base properties of ceria.Understanding the unique redox and acid-base properties of ceria is essential to build the structure-catalysis relationship so that improved catalytic functions can be achieved for ceria-based materials.Among the characterization toolbox,spectroscopic approach indisputably stands out for its unparalleled power in offering chemical insights into the surface properties of ceria at atomic and molecular level.In this review,we summarize advances in revealing the redox and acid-base properties of ceria via a variety of spectroscopic methods including optical,X-ray,neutron,electronic and nuclear spectroscopy.Both direct spectroscopy characterization and its coupling with probe molecules are analyzed to illustrate how the nature,strength and density of different surface sites are influenced by the pretreatment,the morphology and size of ceria nanoparticles.Further directions in taking advantage of in situ/operando spectroscopy for better understanding the catalysis of ceria-based materials are proposed in the summary and outlook section.展开更多
Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial ...Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial acid producing metabolisms,is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes.The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions.Several alkaliphilic acid producing bacteria were isolated in this study.One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02).Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis.The optimized fermentation conditions were as follows:pH 10;NaCl concentration 5%;temperature 25℃;EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively.Based on optimal fermentation conditions,EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test.Acetic acid,propionic acid and CO2(g)were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism.This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.展开更多
The amphoteric properties of four sulfide minerals were characterized byacidimetric-alkalimetric titration. Chalcocite, galena, and sphalerite were found to bediprotic acids, while pyrite was determined to be a tripro...The amphoteric properties of four sulfide minerals were characterized byacidimetric-alkalimetric titration. Chalcocite, galena, and sphalerite were found to bediprotic acids, while pyrite was determined to be a triprotic acid. Intrinsic acidity con-stants for the four minerals are as follows: chalcocite-pK_(a1)=5.25, pK_(a2)=9.68;galena- pK_(a1)=5.26, pK_(a2)=9.62; sphalente- pK_(a1)= 5.08, pK_(a2)= 9.13;and pyrite - pK_(a1) = 3.50,pK_(a2)=5.32, pK_(a3)=9.81.展开更多
On October 13,2020,on the fairway connecting the Polish Baltic ports ofSwinoujscie and Szczecin,an underwater hazardous object of historical origin in the form of the British deep penetration bomb Tallboy dropped duri...On October 13,2020,on the fairway connecting the Polish Baltic ports ofSwinoujscie and Szczecin,an underwater hazardous object of historical origin in the form of the British deep penetration bomb Tallboy dropped during the bombing of the German cruiser"Lützow"in April 1945 was neutralized successfully.It is believed to be the first underwater action concerning this type of bomb,which has previously been neutralized on land in Europe(Germany,one confirmed case).The preparation of the operation,on an unprecedented scale at national,European and global level,took one year and included a series of projects related to clearing the space around the bomb from other identified UXO objects,international consultations,historical analyses,determination of the risk to residents and critical infrastructure in the event of an explosion of the bomb containing approximately 2400 kg of the TORPEX explosive(with an increased force equivalent to almost 3600 kg of TNT).The object was neutralized on spot at the depth of 12 m,near a ferry crossing,by specialists from the 41st Navy EOD Team from the 12th MCM Squadron(8th Coastal Defence Flotilla),using the Low Order Deflagration technique(underwater deflagration method).In the case discussed,there was an accumulation of unfavourable conditions which practically excluded the use of blow-in-situ explosive methods(BIP),as well as the extraction of the object and its transport to a military ground.After a partial deflagration of the explosive,the explosive was detonated(DDT).Estimates indicate that the deflagration level reached between 55 and 60%,which significantly reduced the strength and effects of the underwater explosion.展开更多
Objective Although HIV-1 infection is prevalent in many regions in China, it remains largely unknown on the biological characteristics of dominant circulating isolates. This study was designed to isolate the circulati...Objective Although HIV-1 infection is prevalent in many regions in China, it remains largely unknown on the biological characteristics of dominant circulating isolates. This study was designed to isolate the circulating viral strains from different prevalent regions and to characterize their biological properties and neutralization sensitivity. Methods Primary viruses were isolated from fresh PBMCs using the traditional co-culture method and their capacity of inducing syncytium was tested in MT-2 cells. Meanwhile, their coreceptor usage was determined with two cell lines: Magi and GHOST (3) stably expressing CD4 and the chemokine receptor CCR5 or CXCR4. Furthermore, the sensitivity of these viruses to neutralization by HIV-1-infected patients’ plasma which were highly active to neutralize SF33 strain, was quantified in GHOST cell-based neutralization assay. Results Six primary viral strains were isolated from 4 separated regions. Isolates LTG0213,LTG0214 and XVS032691 induced syncytia in MT-2 cells, and used CXCR4 as coreceptor. Isolates XJN0021, XJN0091, or SHXDC0041 did not induce syncytia, and used CCR5 as coreceptor. Overall neutralization sensitivity differed among four representative strains: HIV-1 XVS032691>LTG0214>XJN0091≈SHXDC0041. Conclusion The neutralization sensitivity of HIV isolates is linked with the phenotype of isolates, in which syncytium-inducing (SI) or CXCR4-tropic (X4) viruses are more easily neutralized than non-syncytium-inducing (NSI) or CCR5-tropic (R5) viruses. The genetic subtypes based on the phylogeny of env sequences are not classical neutralization serotypes.展开更多
5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high in...5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high internal phase emulsions(Pickering HIPEs)as template and functional metal-organic frameworks(MOFs,UiO-66-SO;H and UiO-66-NH;)/Tween 85 as co-stabilizers to synthesis the dual acid-base bifunctional macroporous polymer catalyst by one-pot process,which has excellent catalytic activity in the cascade reaction of converting cellulose to 5-HMF.The effects of the emulsion parameters including the amount of surfactant(ranging from 0.5%to 2.0%(mass)),the internal phase volume fraction(ranging from 75%to 90%)and the acid/base Pickering particles mass ratio(ranging from 0:6 to 6:0)on the morphology and catalytic performance of solid catalyst were systematically researched.The results of catalytic experiments suggested that the connected large pore size of catalyst can effectively improve the cellulose conversion,and the synergistic effect of acid and base active sites can effectively improve the 5-HMF yield.The highest 5-HMF yield,about 40.5%,can be obtained by using polymer/MOFs composite as catalyst(Poly-P12,the pore size of(53.3±11.3)μm,the acid density of 1.99 mmol·g^(-1)and the base density of 1.13 mol·g^(-1))under the optimal reaction conditions(130℃,3 h).Herein,the polymer/MOFs composite with open-cell structure was prepared by the Pickering HIPEs templating method,which provided a favorable experimental basis and theoretical reference for achieving efficient production of high addedvalue product from abundant biomass.展开更多
Sulfonated poly(phthalazinone)s (SPPENK, SPPESK and SPPBEK) were prepared by direct polymerization reaction from sulfonated monomers. The novel acid-base membranes were composed of sulfonated polymers as the acidi...Sulfonated poly(phthalazinone)s (SPPENK, SPPESK and SPPBEK) were prepared by direct polymerization reaction from sulfonated monomers. The novel acid-base membranes were composed of sulfonated polymers as the acidic compounds, and polyetherimide (PEI) as the basic compounds, casting from their N-methylpyrrolidone (NMP) solution directly onto clean glass plates at 60 ℃ aiming at enhancing membrane toughness and other relative properties. The resulted acid-base composite membranes had excellent resistance to swelling, thermo-stability, hydrolysis resistance and oxidative resistance properties with highly ion-exchange capacity (IEC).展开更多
In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various...In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various nucleic acid-based therapeutic approaches targeting the HCV genome,such as ribozymes,aptamers,siRNAs,and antisense oligonucleotides,have been suggested as potential tools against HCV.Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics.These limitations have hampered the clinical development of nucleic acid-based therapeutics.However,despite these limitations,nucleic acid-based therapeutics has clinical value due to their great specificity,easy and large-scale synthesis with chemical methods,and pharmaceutical flexibility.Moreover,nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle,and therefore they may prove to be more effective than existing therapeutics,such as interferon-αand ribavirin combination therapy.This review focuses on the current status and future prospects of ribozymes,aptamers,siRNAs,and antisense oligonucleotides as therapeutic reagents against HCV.展开更多
基金supported by the Natural Science Foundation of China (No. 22268003)。
文摘To avoid carbonate precipitation for CO_(2) electrolysis,developing CO_(2) conversion in an acid electrolyte is viewed as an ultimately challenging technology.In Nature,Xia et al.recently explored a proton-exchange membrane system for reducing CO_(2) to formic acid with a Pb±Pb SO_(4) composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism.Up to 93%Faradaic efficiency was realized when formic acid was produced by this technology.
基金This research was supported by National Science Founda-tion of China (No. 30000123) and Conversation Department of Wildlife Ani-mal & Plants of State Forestry Bureau.
文摘In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda抯 sera was established by using two-fold dilutions of serum and 100 TCID50 of the virus. The 62 sera samples of giant pandas, which were gathered from zoos and reserve region of Sichuan Province, China were detected. The neutralization antibody titer of 1:4 was recognized as the positive criterion, 8 sera samples were detected to be positive, and the positive rate was 12.9%. The titers of neutralizing antibody ranged from 1:8 to 1:32. It was the first comprehensive investigation on neutralization antibodies against CCV in giant panda population in China. The results of study showed that the infection of CCV in giant panda population was universal, which has posed a threat to the health of giant panda. Therefore, it is incumbent on us to study safe and effective vaccines to protect giant panda against CCV infection.
基金supported by the National Natural Science Foundation of China(91545114,91545203,and 21576227)the 985 Program of the Chemistry and Chemical Engineering disciplines of Xiamen University~~
文摘Acetol is a major light oxygenate and readily produced from staged or fast pyrolysis of lignocellulose biomass. Herein we report that acetol can be selectively converted to methyl pyruvate, an important fine chemical, through oxidative esterification over Au-based catalysts. Detailed experimental studies showed that Au on amphoteric supports with appropriate strength and balanced ratio of acid and base sites can facilitate the desired oxidative-esterification pathway without accelerating undesired aldol-condensation or Cannizzaro reactions. In particular, hydroxyapatite (with a Ca/P ratio of 1.62) supported Au achieved 87% selectivity to methyl pyruvate at an acetol conversion of 62%.
基金supported by grants from National Science and Technology Major Project(2012ZX10004701)
文摘The CD4 binding site(CD4bs) of envelope glycoprotein(Env) is an important conserved target for anti-human immunodeficiency virus type 1(HIV-1) neutralizing antibodies. Neutralizing monoclonal antibodies IgG1 b12(b12) could recognize conformational epitopes that overlap the CD4 bs of Env. Different virus strains, even derived from the same individual, showed distinct neutralization susceptibility to b12. We examined the key amino acid residues affecting b12 neutralization susceptibility using single genome amplification and pseudovirus neutralization assay. Eleven amino acid residues were identified that affect the sensitivity of Env to b12. Through site-directed mutagenesis, an amino acid substitution at position 182 in the V2 region of Env was confirmed to play a key role in regulating the b12 neutralization susceptibility. The introduction of V182 L to a resistant strain enhanced its sensitivity to b12 more than twofold. Correspondingly, the introduction of L182 V to a sensitive strain reduced its sensitivity to b12 more than tenfold. Amino acid substitution at positions 267 and 346 could both enhance the sensitivity to b12 more than twofold. However, no additive effect was observed when the three site mutageneses were introduced into the same strain, and the sensitivity was equivalent to the single V182 L mutation. CRF07_BC is a major circulating recombinant form of HIV-1 prevalent in China. Our data may provide important information for understanding the molecular mechanism regulating the neutralization susceptibility of CRF07_BC viruses to b12 and may be helpful for a vaccine design targeting the CD4 bs epitopes.
文摘This paper analyzed the current situation and development trends of energy consumption and carbon emissions,and the current situation and development trend of coal consumption in China.In the context of recently established carbon peak and carbon neutralization targets,this paper put forward the main problems associated with the green and low-carbon development and utilization of coal.Five key technological innovation directions in mining were proposed,including green coal development,intelligent and efficient mining,low-carbon utilization and conversion of coal,energy conservation and emission reduction,carbon capture,utilization and storage(CCUS).Focusing on the above technological innovation directions,it is suggested to carry out three basic theories,including the theory of green efficient intelligent mining,clean and low-carbon utilization and transformation of coal,and CCUS.Meanwhile,it is proposed to develop 12 key technologies,including green coal mining and ecological environment protection,efficient coal mining and intelligent mine construction,key technologies and equipment for efficient coal processing,underground coal gasification and mining,ultra-high parameter and ultra-supercritical power generation technology,intelligent and flexible coal-fired power generation technology,new power cycle coal-fired power generation technology,the development of coal-based special fuels,coal-based bulk and specialty chemicals,energy conservation and consumption reduction,large-scale and low-cost carbon capture,CO_(2) utilization and storage.Finally,necessary measures from the governmental perspective were also proposed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB23030300, XDA1502070901, XDA1502070503)。
文摘To achieve the neutralization control requirements of the radio-frequency(RF)ion microthruster(μRIT)in the‘Taiji-1’satellite mission,we proposed an active neutralization control solution that is based on the carbon nanotube field emission technology.The carbon nanotube field emission neutralizer(CNTN)has the characteristics of light weight,small size,and propellantless,which is especially suitable for the neutralization control tasks of ion microthrusters.The Institute of Mechanics,Chinese Academy of Sciences,in collaboration with Tsinghua University,has successfully developed a CNTN to meet mission requirements.On the ground,the feasibility of cooperation working betweenμRIT and CNTN was fully verified,as well as the simulation and experimental study of neutralization control strategy,which finally passed the engineering assessment test.Since the launch of‘Taiji-1’satellite on 31 August,2019,the RF ion micropropulsion system has successfully completed nearly one hundred test missions in space.The test results indicate that CNTN does not have performance degradation,and the neutralization control strategy is effective.
基金The National Basic Research Program of China under contract No 2006CB101806the National"863"Project of China under con-tract No 2006AA100312
文摘The neutralizing activities of eight monoclonal antibodies (MAbs) against white spot syndrome virus (WSSV) (2D2, 2B2,1D2, 1D5, 1C2, 4A1, 6A4 and 6B4) were analyzed by in vivo experiments. Gills from WSSV-infected shrimp were homogenized and ten-fold serially diluted by PBS, and then incubated with MAbs (hybridoma culture supernatant), respectively. The mixture of WSSV and MAbs were injected into crayfish (Procambarus clarkii). After challenge, the death rates of crayfish were counted to determine the neutralizing activities of MAbs. At the same time, the mixture of myeloma culture supernatant and WSSV or PBS was served as positive or negative control, respectively. The results showed that, at each virus dilution, the mean time to death of the crayfish injected with MAb-treated virus was significantly longer than that in the positive control, though they all showed 100% mortality within 25 d, and meanwhile, few crayfish died in the negative control. Among the eight MAbs, 2D2, 2B2, 1D2 and 1D5, especially the former two, delayed the mortality significantly, and 1 C2, 4A1 and 6A4 delayed the mortality as well but not so efficiently, while MAb 6IM was efficient only when the virus concentration increased. The results indicated that the anti-WSSV MAbs can neutralize WSSV in different virus dilutions.
文摘This study described a regime map for dry neutralization agglomeration. Based on the map, the effects of selected key parameters, such as ingredient composition, operation temperature, agitation speed, and size of Na_2CO_3 particles, were investigated using a laboratory-scale mixer, and properties of the agglomeration product were analyzed, including particle size distribution, Hunter color, and flowability. Torque curves evolving during the process were correlated with the system flowability. Three distinguishable regimes were indicated, dry, wet, and transitional, and the agitation speed was found to have a different influence on the agglomeration process for the three regimes. Furthermore, the influence of temperature on reactive agglomeration significantly differed from that in agglomeration processes in which the binder was non-reactive.
文摘Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
文摘Objective:To improve the diagnosis and therapeutic effect of occurrence and development of hyponatremia and disorder of acid-base balance among patients with hepatic encephalopathy(HE) by elucidating the regularity and mechanism,as well as its influence on prognosis.Methods:327 HE patients admitted to our hospital from January 1990 to June 2010 were enrolled.Meanwhile 316 patients hospitalized in the medical department of the same hospital were chosen as the control group.Patients in both groups were given the same methods to measure arterial blood gas parameters(pH value,PaCO2,[HCO3-],TCO2,BE and SaO2),blood biochemistry([Na+],[K+],[Cl-]),liver function,kidney function and blood glucose,serum sodium,and thereupon tocalculate the anion gap(AG) and the potential [HCO3-],and acid-base balance disorder.Results:Among the 327 HE patients,hyponatremia was found in 188 cases(57.4%),of whom 132 patients died(70.2%).While among the 316 patients in control group,68 presented with hyponatremia(21.5%),and 19 died(27.9%).The incidence and mortality were significantly different between the two groups(P<0.001).All the 327 patients presented with different degrees of acid-base balance disorder and 178 died(54.4%),in whom 164(50.2%) belonged to simple acid-base balance disorder and 74(45.1%) died,136(41.6%) were dual acid-base balance disorder and 80(58.8%) died,27(8.2%) were triple acid-base disturbance and 24(88.9%) died.Whereas in the control group only 83 patients(26.2%) were recognized as simple and dual acid-base balance disorder,and 18(21.7%) died.There was higher incidence of acid-base balance disorder and mortality rate in HE group than control one(P<0.001).Conclusion:Hyponatremia is valuable to judge HE patients' prognosis.The key parameters in the judgment and evaluation on acid-base balance disorder among HE patients are the change of pH values and serum electrolyte values.When pH value ≤ 7.30 or > 7.55,it generally suggests a poor prognosis.
基金supported by the National Natural Science Foundation of China (No. 31170539)
文摘Two dehydroabietic acid-based arylamines have been synthesized and characterized by FTIR, 1H NMR, 13C NMR, MS spectra and elemental analysis. Their spatial structures were determined by X-ray diffraction analysis. UV-Vis absorption and fluorescence spectral characteristics of these compounds in methanol were investigated. Their fluorescence emission spectra in different polarity solvents were further evaluated. Fluorescent properties and structural relationship of the compounds showed that fluorescence intensity and quantum yield inversely increase with the non-coplanar degree. In addition, the solvent polarity has different effects on the fluorescence emission spectra of two compounds.
基金the support of Key Laboratory of Chinese Medicine Preparation of Solid Dispersion,Gansu Longshenrongfa Pharmaceutical Industry Co.,Ltd.,Gansu Province,China
文摘As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.
文摘Cerium oxide(ceria)plays an important and fascinating role in heterogeneous catalysis as illustrated by its versatile use as a catalyst,a catalyst support,or a promotor in various oxidation and reduction reactions.Central to these reactions is the rich defect chemistry,facile redox capability,and unusual acid-base properties of ceria.Understanding the unique redox and acid-base properties of ceria is essential to build the structure-catalysis relationship so that improved catalytic functions can be achieved for ceria-based materials.Among the characterization toolbox,spectroscopic approach indisputably stands out for its unparalleled power in offering chemical insights into the surface properties of ceria at atomic and molecular level.In this review,we summarize advances in revealing the redox and acid-base properties of ceria via a variety of spectroscopic methods including optical,X-ray,neutron,electronic and nuclear spectroscopy.Both direct spectroscopy characterization and its coupling with probe molecules are analyzed to illustrate how the nature,strength and density of different surface sites are influenced by the pretreatment,the morphology and size of ceria nanoparticles.Further directions in taking advantage of in situ/operando spectroscopy for better understanding the catalysis of ceria-based materials are proposed in the summary and outlook section.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of ChinaProject(502221703)supported by the Innovative Project of Independent Exploration of Central South University,China
文摘Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial acid producing metabolisms,is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes.The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions.Several alkaliphilic acid producing bacteria were isolated in this study.One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02).Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis.The optimized fermentation conditions were as follows:pH 10;NaCl concentration 5%;temperature 25℃;EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively.Based on optimal fermentation conditions,EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test.Acetic acid,propionic acid and CO2(g)were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism.This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.
文摘The amphoteric properties of four sulfide minerals were characterized byacidimetric-alkalimetric titration. Chalcocite, galena, and sphalerite were found to bediprotic acids, while pyrite was determined to be a triprotic acid. Intrinsic acidity con-stants for the four minerals are as follows: chalcocite-pK_(a1)=5.25, pK_(a2)=9.68;galena- pK_(a1)=5.26, pK_(a2)=9.62; sphalente- pK_(a1)= 5.08, pK_(a2)= 9.13;and pyrite - pK_(a1) = 3.50,pK_(a2)=5.32, pK_(a3)=9.81.
文摘On October 13,2020,on the fairway connecting the Polish Baltic ports ofSwinoujscie and Szczecin,an underwater hazardous object of historical origin in the form of the British deep penetration bomb Tallboy dropped during the bombing of the German cruiser"Lützow"in April 1945 was neutralized successfully.It is believed to be the first underwater action concerning this type of bomb,which has previously been neutralized on land in Europe(Germany,one confirmed case).The preparation of the operation,on an unprecedented scale at national,European and global level,took one year and included a series of projects related to clearing the space around the bomb from other identified UXO objects,international consultations,historical analyses,determination of the risk to residents and critical infrastructure in the event of an explosion of the bomb containing approximately 2400 kg of the TORPEX explosive(with an increased force equivalent to almost 3600 kg of TNT).The object was neutralized on spot at the depth of 12 m,near a ferry crossing,by specialists from the 41st Navy EOD Team from the 12th MCM Squadron(8th Coastal Defence Flotilla),using the Low Order Deflagration technique(underwater deflagration method).In the case discussed,there was an accumulation of unfavourable conditions which practically excluded the use of blow-in-situ explosive methods(BIP),as well as the extraction of the object and its transport to a military ground.After a partial deflagration of the explosive,the explosive was detonated(DDT).Estimates indicate that the deflagration level reached between 55 and 60%,which significantly reduced the strength and effects of the underwater explosion.
文摘Objective Although HIV-1 infection is prevalent in many regions in China, it remains largely unknown on the biological characteristics of dominant circulating isolates. This study was designed to isolate the circulating viral strains from different prevalent regions and to characterize their biological properties and neutralization sensitivity. Methods Primary viruses were isolated from fresh PBMCs using the traditional co-culture method and their capacity of inducing syncytium was tested in MT-2 cells. Meanwhile, their coreceptor usage was determined with two cell lines: Magi and GHOST (3) stably expressing CD4 and the chemokine receptor CCR5 or CXCR4. Furthermore, the sensitivity of these viruses to neutralization by HIV-1-infected patients’ plasma which were highly active to neutralize SF33 strain, was quantified in GHOST cell-based neutralization assay. Results Six primary viral strains were isolated from 4 separated regions. Isolates LTG0213,LTG0214 and XVS032691 induced syncytia in MT-2 cells, and used CXCR4 as coreceptor. Isolates XJN0021, XJN0091, or SHXDC0041 did not induce syncytia, and used CCR5 as coreceptor. Overall neutralization sensitivity differed among four representative strains: HIV-1 XVS032691>LTG0214>XJN0091≈SHXDC0041. Conclusion The neutralization sensitivity of HIV isolates is linked with the phenotype of isolates, in which syncytium-inducing (SI) or CXCR4-tropic (X4) viruses are more easily neutralized than non-syncytium-inducing (NSI) or CCR5-tropic (R5) viruses. The genetic subtypes based on the phylogeny of env sequences are not classical neutralization serotypes.
基金financially supported by the National Natural Science Foundation of China(No.21606100)the Natural Science Foundation of Jiangsu Province(No.BK20180850)+1 种基金the China Postdoctoral Science Foundation(Nos.2019M651740 and 2019T120397)the Young Talent Cultivate Programme of Jiangsu University。
文摘5-Hydroxymethylfurfural(5-HMF),as a key platform compound for the conversion of biomass to various biomass-derived chemicals and biofuels,has been attracted extensive attention.In this research,using Pickering high internal phase emulsions(Pickering HIPEs)as template and functional metal-organic frameworks(MOFs,UiO-66-SO;H and UiO-66-NH;)/Tween 85 as co-stabilizers to synthesis the dual acid-base bifunctional macroporous polymer catalyst by one-pot process,which has excellent catalytic activity in the cascade reaction of converting cellulose to 5-HMF.The effects of the emulsion parameters including the amount of surfactant(ranging from 0.5%to 2.0%(mass)),the internal phase volume fraction(ranging from 75%to 90%)and the acid/base Pickering particles mass ratio(ranging from 0:6 to 6:0)on the morphology and catalytic performance of solid catalyst were systematically researched.The results of catalytic experiments suggested that the connected large pore size of catalyst can effectively improve the cellulose conversion,and the synergistic effect of acid and base active sites can effectively improve the 5-HMF yield.The highest 5-HMF yield,about 40.5%,can be obtained by using polymer/MOFs composite as catalyst(Poly-P12,the pore size of(53.3±11.3)μm,the acid density of 1.99 mmol·g^(-1)and the base density of 1.13 mol·g^(-1))under the optimal reaction conditions(130℃,3 h).Herein,the polymer/MOFs composite with open-cell structure was prepared by the Pickering HIPEs templating method,which provided a favorable experimental basis and theoretical reference for achieving efficient production of high addedvalue product from abundant biomass.
基金This study was supported by the National Natural Science Foundation of China (No. 50373005);the Chinese National Programs for High Technology Research and Development ("863" plan, No. 2003AA33G030).
文摘Sulfonated poly(phthalazinone)s (SPPENK, SPPESK and SPPBEK) were prepared by direct polymerization reaction from sulfonated monomers. The novel acid-base membranes were composed of sulfonated polymers as the acidic compounds, and polyetherimide (PEI) as the basic compounds, casting from their N-methylpyrrolidone (NMP) solution directly onto clean glass plates at 60 ℃ aiming at enhancing membrane toughness and other relative properties. The resulted acid-base composite membranes had excellent resistance to swelling, thermo-stability, hydrolysis resistance and oxidative resistance properties with highly ion-exchange capacity (IEC).
基金Supported by National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning No.2012M3A9B6055200,No.2013R1A2A2A01004649
文摘In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various nucleic acid-based therapeutic approaches targeting the HCV genome,such as ribozymes,aptamers,siRNAs,and antisense oligonucleotides,have been suggested as potential tools against HCV.Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics.These limitations have hampered the clinical development of nucleic acid-based therapeutics.However,despite these limitations,nucleic acid-based therapeutics has clinical value due to their great specificity,easy and large-scale synthesis with chemical methods,and pharmaceutical flexibility.Moreover,nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle,and therefore they may prove to be more effective than existing therapeutics,such as interferon-αand ribavirin combination therapy.This review focuses on the current status and future prospects of ribozymes,aptamers,siRNAs,and antisense oligonucleotides as therapeutic reagents against HCV.