In dairy and food industries lactic acid bacteria (LAB) have been used in form of starter culture that plays vital role in fermentation; as flavouring and texturizing or as preservative agents. There is increasing e...In dairy and food industries lactic acid bacteria (LAB) have been used in form of starter culture that plays vital role in fermentation; as flavouring and texturizing or as preservative agents. There is increasing evidence that lactobacilli which inhabit the gastrointestinal tract develop antimicrobial activities and participate in the host's defence system[1]. During fermentation, most of the LAB produces a number of different compounds like organic acids, hydrogen peroxide, diacetyl, acetaldehyde, carbon dioxide, polysaccharides, and proteinaceous compounds called bacteriocins or bacteriocinogenic peptides.展开更多
Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental,chemical,food,and medical fields.Here we demonstrate electrochemical control in fermenting food waste,dige...Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental,chemical,food,and medical fields.Here we demonstrate electrochemical control in fermenting food waste,digestate,and wastewater to improve lactic acid production.We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid.Continued operation that introduced epi/endophytic communities(Lactococcus,Lactobacillus,Weissella)to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80%L.plantarum retention.Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer.While short-term experiments differentially enriched Lactococcus and Klebsiella spp.,longer-term operations indicated convergent microbiomes and product spectra.These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential,underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.展开更多
Introduction Assessment of environmental health effects arising from exposure to multiple substances is often very challenging.This is particularly true when humans are exposed to a mixture that contains both benefici...Introduction Assessment of environmental health effects arising from exposure to multiple substances is often very challenging.This is particularly true when humans are exposed to a mixture that contains both beneficial and harmful substances.A good example relates to the risk and benefits of fish consumption.展开更多
文摘In dairy and food industries lactic acid bacteria (LAB) have been used in form of starter culture that plays vital role in fermentation; as flavouring and texturizing or as preservative agents. There is increasing evidence that lactobacilli which inhabit the gastrointestinal tract develop antimicrobial activities and participate in the host's defence system[1]. During fermentation, most of the LAB produces a number of different compounds like organic acids, hydrogen peroxide, diacetyl, acetaldehyde, carbon dioxide, polysaccharides, and proteinaceous compounds called bacteriocins or bacteriocinogenic peptides.
基金US Department of Agriculture(INFEWS/T1:AWD1006334)US Department of Energy(DE-EE0009494).
文摘Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental,chemical,food,and medical fields.Here we demonstrate electrochemical control in fermenting food waste,digestate,and wastewater to improve lactic acid production.We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid.Continued operation that introduced epi/endophytic communities(Lactococcus,Lactobacillus,Weissella)to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80%L.plantarum retention.Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer.While short-term experiments differentially enriched Lactococcus and Klebsiella spp.,longer-term operations indicated convergent microbiomes and product spectra.These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential,underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.
基金Alberta Health,Alberta Innovates,the Canada Research Chairs Program,the Canadian Institutes of Health Research,and the Natural Sciences and Engineering Research Council of Canada
文摘Introduction Assessment of environmental health effects arising from exposure to multiple substances is often very challenging.This is particularly true when humans are exposed to a mixture that contains both beneficial and harmful substances.A good example relates to the risk and benefits of fish consumption.