The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (I...The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.展开更多
The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NM...The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214.展开更多
Olefin oligomerization reaction catalyzed by new catalyst systems(a Br?nsted‐acidic ionic liquid as the main catalyst and tricaprylylmethylammonium chloride as the co‐catalyst) has been investigat‐ed. The synthe...Olefin oligomerization reaction catalyzed by new catalyst systems(a Br?nsted‐acidic ionic liquid as the main catalyst and tricaprylylmethylammonium chloride as the co‐catalyst) has been investigat‐ed. The synthesized Br?nsted acidic ionic liquids were characterized by Fourier transform infrared spectroscopy(FT‐IR), ultraviolet‐visible spectroscopy(UV), ^1H nuclear magnetic resonance(NMR), and ^13 C NMR to analyze their structures and acidities. The influence of different ionic liquids, ionic liquid loading, different co‐catalysts, catalyst ratios(mole ratio of ionic liquid to co‐catalyst), reac‐tion time, pressure, temperature, solvent, source of reactants, and the recycling of catalyst systems was studied. Among the synthesized ionic liquids, 1‐(4‐sulfonic acid)butyl‐3‐hexylimidazolium hydrogen sulfate([HIMBs]HSO4) exhibited the best catalytic activity under the tested reaction con‐ditions. The conversion of isobutene and selectivity of trimers were 83.21% and 35.80%, respec‐tively, at the optimum reaction conditions. Furthermore, the catalyst system can be easily separated and reused; a feasible reaction mechanism is proposed on the basis of the distribution of experi‐mental products.展开更多
BrФnsted acidic ionic liquids based on imidazolium cation were employed as a series of environmentally benign catalysts and mediums in the alcoholysis of acetonitrile to synthesize ester. The results showed that BrФ...BrФnsted acidic ionic liquids based on imidazolium cation were employed as a series of environmentally benign catalysts and mediums in the alcoholysis of acetonitrile to synthesize ester. The results showed that BrФnsted acidic ionic liquid [HSO3- pmim]HSO4 was an efficient catalyst and medium for the alcoholysis of acetonitrile which could be recycled easily without obvious decline in catalytic activity, the highest yield could reach 85%.展开更多
Acetalation of formaldehyde(HCHO)with dialkyl formal or aliphatic alcohol to prepare polyoxymethylene dialkyl ethers(RO(CH2O)nR,n≥1)catalyzed by Br?nsted‐acidic ionic liquids has been developed.The correlation betwe...Acetalation of formaldehyde(HCHO)with dialkyl formal or aliphatic alcohol to prepare polyoxymethylene dialkyl ethers(RO(CH2O)nR,n≥1)catalyzed by Br?nsted‐acidic ionic liquids has been developed.The correlation between the structure and acidity activity of various ionic liquids was studied.Among the ionic liquids investigated,1‐(4‐sulfonic acid)butyl‐3‐methylimidazolium hydrogen sulfate([MIMBs]HSO4)exhibited the best catalytic performance in the reaction of diethoxymethane(DEM1)with trioxane.The influences of ionic liquid loading,molar ratio of DEM1to HCHO,reaction temperature,pressure,time,and reactant source on the catalytic reaction were explored using[MIMBs]HSO4as the catalyst.Under the optimal conditions of n([MIMBs]HSO4):n(DEM1):n(HCHO)=1:80:80,140°C,and4h,the conversion of HCHO and selectivity for DEM2?8were92.6%and95.1%,respectively.The[MIMBs]HSO4catalyst could be easily separated and reused.A feasible mechanism for the catalytic performance of[MIMBs]HSO4was proposed.展开更多
Six Brnsted acidic ionic liquids(ILs) 1a―1f were synthesized and used as the dual solvent-catalyst systems for Beckmann rearrangement reactions. Among ILs 1a―1f, IL 1a exhibited the highest catalytic activity and ...Six Brnsted acidic ionic liquids(ILs) 1a―1f were synthesized and used as the dual solvent-catalyst systems for Beckmann rearrangement reactions. Among ILs 1a―1f, IL 1a exhibited the highest catalytic activity and successfully catalyzed the Beckmann rearrangement of ketoximes, and the corresponding amides were obtained in good to excellent yields(74%―92%). In addition, IL 1a could be recovered easily and reused at least three times without any loss of catalytic activity.展开更多
2-Methyl-4-methoxyaniline (MMA) was synthesized by one-pot method through the hydrogenation and Bamberger rearrangement of o-nitrotoluene in methanol using acidic ionic liquid and 3% Pt/C as catalyst system. The eff...2-Methyl-4-methoxyaniline (MMA) was synthesized by one-pot method through the hydrogenation and Bamberger rearrangement of o-nitrotoluene in methanol using acidic ionic liquid and 3% Pt/C as catalyst system. The effects of ionic liquid type, dosage of ionic liquid and 3% Pt/C, reaction temperature and reaction pressure on o-nitrotoluene conversion and MMA selectivity were investigated. The results indicated that the imidazolium-based acidic ionic liquid which contains SO3H-functionalized cation showed higher selectivity to MMA than other acidic ionic liquids used in this work. Using 1-(propyl-3-sulfonate)-3-methylimidazolium hydrosulfate ([HSO3-pmim][HSO4]) as the acid catalyst, the selectivity to MMA was as high as 67.6% at 97.8% of o-nitrotoluene conversion. As 3% Pt/C increased from 0.01 g to 0.025 g, the selectivity to MMA decreased from 73.4% to 62.5%, because of the hydrogenation of intermediate o-methyl-phenylhydroxylamine to o-toluidine becoming more dominant. An increase in hydrogen pressure also had obviously dramatic effect in lowering the MMA selectivity. After easy separation from the products, the catalyst system could be reused at least 3 times.展开更多
Na2WO4‐acidic ionic liquid was used as a simple, ecofriendly, recyclable and efficient catalytic system for the one‐pot conversion of cyclohexanol to ε‐caprolactam. The effect of the structure of the ionic liquid ...Na2WO4‐acidic ionic liquid was used as a simple, ecofriendly, recyclable and efficient catalytic system for the one‐pot conversion of cyclohexanol to ε‐caprolactam. The effect of the structure of the ionic liquid on the catalytic activity of this system was investigated, and the results revealed that sulfonic acid‐functionalized ionic liquids with HSO4? as an anion gave the best results. The highly efficient performance of this catalyst system was attributed to the phase‐transfer behavior of the cation of the ionic liquid, the improved coordination of the substrate to bisperoxotungstate duringthe oxidation reaction, and the stabilization of the intermediate formed during the Beckmann rearrangement.展开更多
Several Bronsted acidic ionic liquids(ILs) were synthesized and used as dual solvent-catalysts for the Ritter reaction of benzonitrile with tert-butanol. In particular, IL11([NSPTEA][OTF]) showed excellent catalyt...Several Bronsted acidic ionic liquids(ILs) were synthesized and used as dual solvent-catalysts for the Ritter reaction of benzonitrile with tert-butanol. In particular, IL11([NSPTEA][OTF]) showed excellent catalytic activity for the Ritter reaction. In the presence of IL11, various nitriles and tertiary alcohols as well as secondary alcohols were converted smoothly to the corresponding amides in good to excellent yields. In addition, this cost-effective ionic liquid [NSPTEA][OTF] was easily separated from the reaction mixture by extraction with a small amount of water, and was recycled five times without any significant loss in activity.展开更多
To meet the demands of some kinds of reactions catalyzed simultaneously by Br?nsted acid and Lewis acid catalyst, two novel Br?nsted-Lewis acidic ionic liquids, 1-carboxyethylene-3-(4-zinc acetate sulfobutyl) imidazol...To meet the demands of some kinds of reactions catalyzed simultaneously by Br?nsted acid and Lewis acid catalyst, two novel Br?nsted-Lewis acidic ionic liquids, 1-carboxyethylene-3-(4-zinc acetate sulfobutyl) imidazolium chloride ([CH3COO-Zn-O3S-bim-CH2CH2COOH]Cl) and 1-(1,2-dicarboxy) ethylene-3-(4-zinc acetate sulfobutyl) imidazolium chloride ([CH3COO-Zn-O3S-bim-C4H5O4]Cl) were synthesized, in which both Br?nsted and Lewis acidic sites existed in the cation. The structures of the ionic liquids were determined by means of FT-IR, 1H NMR and elemental analysis. The results of Py-IR analysis indicated that the two novel ionic liquids have both Br?nsted and Lewis acid properties. The acid strength values (H0) of the ionic liquids were measured utilizing the UV-visible spectroscopy combined with Hammett indicator method, and the acid amount of them was determined by acid-base titration.展开更多
An efficient metal-free strategy for the synthesis of pharmaceutically relevant benzo[α]carbazoles from the derivatives of readily available 2-phenylindole and bio-renewable acetol in an aqueous biphasic system was d...An efficient metal-free strategy for the synthesis of pharmaceutically relevant benzo[α]carbazoles from the derivatives of readily available 2-phenylindole and bio-renewable acetol in an aqueous biphasic system was developed. This protocol employed a sulfone-containing Bronsted acidic ionic liquid as the catalyst, which could be used for five times without a noticeable decrease in its activity and selectivity. Various substituted 2-phenylindoles and α-hydroxyketones participated in the reaction smoothly, with water as the sole byproduct. Mechanistically, the reaction involved the conventional carbon-nucleophile-induced Heyns-type rearrangement and downstream intramolecular olefination.展开更多
A series of Bronsted acidic ionic liquids(ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of v...A series of Bronsted acidic ionic liquids(ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of various pyrimidinones could be achieved. Of interest, it was found that the reaction was efficiently catalyzed by a novel, eco-friendly functionalized IL [C3SO3HDoim]HSO4, which could be reused for at least 7 times without significantly loss of catalytic activity. The reaction proceeded efficiently at 80℃ to afford the desired products in good yield(up to 96%). In addition, a possible mechanism that accounted for the IL [C3SO3HDoim]HSO4-catalyzed reaction was proposed.展开更多
Some oxindoles derivatives are synthesized from the condensation of indoles with isatins in the presence of green and recycable catalyst [(CH2)4SO3HMIM] [HSO4] in water at room temperature.
Preparation of biodiesel from soybean oils catalyzed by five acidic ionic liquids with three cationic functional groups was investigated. The improvement of the catalytic activities was affected by various functional ...Preparation of biodiesel from soybean oils catalyzed by five acidic ionic liquids with three cationic functional groups was investigated. The improvement of the catalytic activities was affected by various functional groups including pyridine group, N- methylimidazole group, triethylamine group. Among them [C4SO3Hpy]HSO4 with pyridine group showed better catalytic activity with the biodiesel yield of 94.5%, and still yielded more than 90% after six successive uses. The possible mechanism was also discussed by two reaction paths in detail.展开更多
Lewis acidic ionic liquids were used to catalyze the reaction of epoxypropane with POCl3. Considering the lower cost and catalytic activities, we concluded that [Et3NH]Cl/AlCl3 was the most attractive ionic liquid fro...Lewis acidic ionic liquids were used to catalyze the reaction of epoxypropane with POCl3. Considering the lower cost and catalytic activities, we concluded that [Et3NH]Cl/AlCl3 was the most attractive ionic liquid from an economical point of view. But it would be easily inactivated because of sensitive to water and air. Moreover, it could not be reused easily because of difficulty recovery in the reaction. However, supporting [Et3NH]Cl/AlCl3 catalyst could resolve above problems. Supporting [Et3NH]Cl/ AlCl3 catalyst could be separated by filter easily and reused 5 times in 98% yield. Furthermore, the catalyst was applicable to other epoxy ether cleaving reactions.展开更多
N-(α-Alkoxyalkyl)benzotriazoles were synthesized via the condensation of benzotriazole with various aldehydes and alcohols catalyzed by acidic ionic liquid [hmim]HSO4 at room temperature. The yield was up to 99%. T...N-(α-Alkoxyalkyl)benzotriazoles were synthesized via the condensation of benzotriazole with various aldehydes and alcohols catalyzed by acidic ionic liquid [hmim]HSO4 at room temperature. The yield was up to 99%. This novel method was effective when triethoxymethane was utilized instead of alcohols. Moreover, acidic ionic liquid could be reused easily with no significant degradation of its catalytic activity.展开更多
Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sul...Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid.展开更多
The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designe...The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designed and synthesized via the free radical copolymerization of ionic liquid monomers,sodium p-styrenesulfonate,and crosslinkers,followed by acidification.The 31P nuclear magnetic resonance chemical shifts of adsorbed trimethylphosphine oxide indicated that the synthesized SAPILs presented moderate and single acid strength.The thermogravimetric analysis results in the temperature range of 300–345°C revealed that the synthesized SAPILs were more stable than the commercial resin Amberlite IR-120(H)(245°C).Cryogenic scanning electron microscopy testing demonstrated that SAPILs presented unique three-dimensional(3D)honeycomb structure in water,which was ascribed to the swelling-induced self-assembly of the molecules.Moreover,we used SAPILs with micron-sized honeycomb structure in water as catalysts for the hydrolysis of cyclohexyl acetate to cyclohexanol,and determined that their catalytic activity was much higher than that of homogeneous acid catalysts.The equilibrium concentrations of all reaction components inside and outside the synthesized SAPILs were quantitatively analyzed using a series of simulated reaction mixtures.Depending on the reaction mixture,the concentration of cyclohexyl acetate inside SAPIL-1 was 7.5–23.3 times higher than that outside of it,which suggested the high enrichment ability of SAPILs for cyclohexyl acetate.The excellent catalytic performance of SAPILs was attributed to their 3D honeycomb structure in water and high enrichment ability for cyclohexyl acetate,which opened up new avenues for designing highly efficient heterogeneous acid catalysts that could eventually replace conventional homogeneous acid catalysts.展开更多
Lewis acidic guanidinium ionic liquid(LAGIL) 2c was used as a novel, efficient and recyclable catalyst for aminolysis of epoxides under solvent-free and room temperature conditions, giving the corresponding β-amino...Lewis acidic guanidinium ionic liquid(LAGIL) 2c was used as a novel, efficient and recyclable catalyst for aminolysis of epoxides under solvent-free and room temperature conditions, giving the corresponding β-amino alcohols with moderate to excellent regioselectivity(up to 91:9) in high yields(up to 97%). In addition, LAGIL 2c was recycled three times without any loss of catalytic activity and selectivity to the product.展开更多
A novel polyethylene glycol (PEG)-200-based dicationic acidic ionic liquid (PEG200-DAIL) was used to synthesize HMX from DPT by nitrolysis with N2O5. It was found that either N2O5 or PEGzoo-DAIL could improve the ...A novel polyethylene glycol (PEG)-200-based dicationic acidic ionic liquid (PEG200-DAIL) was used to synthesize HMX from DPT by nitrolysis with N2O5. It was found that either N2O5 or PEGzoo-DAIL could improve the yield. Furthermore, the combined use of PEG200-DAIL and N2O5 could increase the yield of HMX to 64% with the used quantity of HNO3 decreased dramatically.展开更多
文摘The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.
基金Supported by the National Natural Science Foundation of China(21576053)the Natural Science Foundation of Fujian Province(2016J01689)the Young Teacher Education Research Foundation of Fujian Province(JAT160056)
文摘The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214.
基金supported by the National Natural Science Foundation of China(21473225)
文摘Olefin oligomerization reaction catalyzed by new catalyst systems(a Br?nsted‐acidic ionic liquid as the main catalyst and tricaprylylmethylammonium chloride as the co‐catalyst) has been investigat‐ed. The synthesized Br?nsted acidic ionic liquids were characterized by Fourier transform infrared spectroscopy(FT‐IR), ultraviolet‐visible spectroscopy(UV), ^1H nuclear magnetic resonance(NMR), and ^13 C NMR to analyze their structures and acidities. The influence of different ionic liquids, ionic liquid loading, different co‐catalysts, catalyst ratios(mole ratio of ionic liquid to co‐catalyst), reac‐tion time, pressure, temperature, solvent, source of reactants, and the recycling of catalyst systems was studied. Among the synthesized ionic liquids, 1‐(4‐sulfonic acid)butyl‐3‐hexylimidazolium hydrogen sulfate([HIMBs]HSO4) exhibited the best catalytic activity under the tested reaction con‐ditions. The conversion of isobutene and selectivity of trimers were 83.21% and 35.80%, respec‐tively, at the optimum reaction conditions. Furthermore, the catalyst system can be easily separated and reused; a feasible reaction mechanism is proposed on the basis of the distribution of experi‐mental products.
基金the Key Project of Chinese Ministry of Education(No.105075)
文摘BrФnsted acidic ionic liquids based on imidazolium cation were employed as a series of environmentally benign catalysts and mediums in the alcoholysis of acetonitrile to synthesize ester. The results showed that BrФnsted acidic ionic liquid [HSO3- pmim]HSO4 was an efficient catalyst and medium for the alcoholysis of acetonitrile which could be recycled easily without obvious decline in catalytic activity, the highest yield could reach 85%.
基金supported by the National Natural Science Foundation of China(21473225)~~
文摘Acetalation of formaldehyde(HCHO)with dialkyl formal or aliphatic alcohol to prepare polyoxymethylene dialkyl ethers(RO(CH2O)nR,n≥1)catalyzed by Br?nsted‐acidic ionic liquids has been developed.The correlation between the structure and acidity activity of various ionic liquids was studied.Among the ionic liquids investigated,1‐(4‐sulfonic acid)butyl‐3‐methylimidazolium hydrogen sulfate([MIMBs]HSO4)exhibited the best catalytic performance in the reaction of diethoxymethane(DEM1)with trioxane.The influences of ionic liquid loading,molar ratio of DEM1to HCHO,reaction temperature,pressure,time,and reactant source on the catalytic reaction were explored using[MIMBs]HSO4as the catalyst.Under the optimal conditions of n([MIMBs]HSO4):n(DEM1):n(HCHO)=1:80:80,140°C,and4h,the conversion of HCHO and selectivity for DEM2?8were92.6%and95.1%,respectively.The[MIMBs]HSO4catalyst could be easily separated and reused.A feasible mechanism for the catalytic performance of[MIMBs]HSO4was proposed.
基金Supported by the National Natural Science Foundation of China(Nos.20771030,20671025)
文摘Six Brnsted acidic ionic liquids(ILs) 1a―1f were synthesized and used as the dual solvent-catalyst systems for Beckmann rearrangement reactions. Among ILs 1a―1f, IL 1a exhibited the highest catalytic activity and successfully catalyzed the Beckmann rearrangement of ketoximes, and the corresponding amides were obtained in good to excellent yields(74%―92%). In addition, IL 1a could be recovered easily and reused at least three times without any loss of catalytic activity.
基金Supported by the National Natural Science Foundation of China (21106134) and the Natural Science Foundation of Zlaejlang Province (Y4100671).
文摘2-Methyl-4-methoxyaniline (MMA) was synthesized by one-pot method through the hydrogenation and Bamberger rearrangement of o-nitrotoluene in methanol using acidic ionic liquid and 3% Pt/C as catalyst system. The effects of ionic liquid type, dosage of ionic liquid and 3% Pt/C, reaction temperature and reaction pressure on o-nitrotoluene conversion and MMA selectivity were investigated. The results indicated that the imidazolium-based acidic ionic liquid which contains SO3H-functionalized cation showed higher selectivity to MMA than other acidic ionic liquids used in this work. Using 1-(propyl-3-sulfonate)-3-methylimidazolium hydrosulfate ([HSO3-pmim][HSO4]) as the acid catalyst, the selectivity to MMA was as high as 67.6% at 97.8% of o-nitrotoluene conversion. As 3% Pt/C increased from 0.01 g to 0.025 g, the selectivity to MMA decreased from 73.4% to 62.5%, because of the hydrogenation of intermediate o-methyl-phenylhydroxylamine to o-toluidine becoming more dominant. An increase in hydrogen pressure also had obviously dramatic effect in lowering the MMA selectivity. After easy separation from the products, the catalyst system could be reused at least 3 times.
基金supported by the National Natural Science Foundation of China (20636030, 2090618, 21236001)the Natural Science Foundation of Hebei Province (B2017202226)~~
文摘Na2WO4‐acidic ionic liquid was used as a simple, ecofriendly, recyclable and efficient catalytic system for the one‐pot conversion of cyclohexanol to ε‐caprolactam. The effect of the structure of the ionic liquid on the catalytic activity of this system was investigated, and the results revealed that sulfonic acid‐functionalized ionic liquids with HSO4? as an anion gave the best results. The highly efficient performance of this catalyst system was attributed to the phase‐transfer behavior of the cation of the ionic liquid, the improved coordination of the substrate to bisperoxotungstate duringthe oxidation reaction, and the stabilization of the intermediate formed during the Beckmann rearrangement.
基金Supported by the Jilin University Innovation Funds, China(No.419070200033)
文摘Several Bronsted acidic ionic liquids(ILs) were synthesized and used as dual solvent-catalysts for the Ritter reaction of benzonitrile with tert-butanol. In particular, IL11([NSPTEA][OTF]) showed excellent catalytic activity for the Ritter reaction. In the presence of IL11, various nitriles and tertiary alcohols as well as secondary alcohols were converted smoothly to the corresponding amides in good to excellent yields. In addition, this cost-effective ionic liquid [NSPTEA][OTF] was easily separated from the reaction mixture by extraction with a small amount of water, and was recycled five times without any significant loss in activity.
基金the Special Program of National Basic Research Program of China(973 Program)(Grant 2010CB234602)National Natural Science Foundation of China(Grant 21076059)+1 种基金the Natural Science Foundation of Tianjin City(Grant 12JCYBJC12800)the Key Basic Program of Applied Basic Research Plan of Hebei Province(Grant 12965642D).
文摘To meet the demands of some kinds of reactions catalyzed simultaneously by Br?nsted acid and Lewis acid catalyst, two novel Br?nsted-Lewis acidic ionic liquids, 1-carboxyethylene-3-(4-zinc acetate sulfobutyl) imidazolium chloride ([CH3COO-Zn-O3S-bim-CH2CH2COOH]Cl) and 1-(1,2-dicarboxy) ethylene-3-(4-zinc acetate sulfobutyl) imidazolium chloride ([CH3COO-Zn-O3S-bim-C4H5O4]Cl) were synthesized, in which both Br?nsted and Lewis acidic sites existed in the cation. The structures of the ionic liquids were determined by means of FT-IR, 1H NMR and elemental analysis. The results of Py-IR analysis indicated that the two novel ionic liquids have both Br?nsted and Lewis acid properties. The acid strength values (H0) of the ionic liquids were measured utilizing the UV-visible spectroscopy combined with Hammett indicator method, and the acid amount of them was determined by acid-base titration.
基金supported by the National Natural Science Foundation of China(21761132014,21872060)the Fundamental Research Funds for the Central Universities of China(2016YXZD033)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXJJS072)Opening fund of Hubei Key Laboratory of Material Chemistry and Service Failure(2017MCF01K)~~
文摘An efficient metal-free strategy for the synthesis of pharmaceutically relevant benzo[α]carbazoles from the derivatives of readily available 2-phenylindole and bio-renewable acetol in an aqueous biphasic system was developed. This protocol employed a sulfone-containing Bronsted acidic ionic liquid as the catalyst, which could be used for five times without a noticeable decrease in its activity and selectivity. Various substituted 2-phenylindoles and α-hydroxyketones participated in the reaction smoothly, with water as the sole byproduct. Mechanistically, the reaction involved the conventional carbon-nucleophile-induced Heyns-type rearrangement and downstream intramolecular olefination.
文摘A series of Bronsted acidic ionic liquids(ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of various pyrimidinones could be achieved. Of interest, it was found that the reaction was efficiently catalyzed by a novel, eco-friendly functionalized IL [C3SO3HDoim]HSO4, which could be reused for at least 7 times without significantly loss of catalytic activity. The reaction proceeded efficiently at 80℃ to afford the desired products in good yield(up to 96%). In addition, a possible mechanism that accounted for the IL [C3SO3HDoim]HSO4-catalyzed reaction was proposed.
文摘Some oxindoles derivatives are synthesized from the condensation of indoles with isatins in the presence of green and recycable catalyst [(CH2)4SO3HMIM] [HSO4] in water at room temperature.
基金supports from the Specialized Research Fund for the Doctoral Program of Higher Education(New Teachers)(No20100093120003)the Fundamental Research Funds for the Central Universities(No JUSRP21112)
文摘Preparation of biodiesel from soybean oils catalyzed by five acidic ionic liquids with three cationic functional groups was investigated. The improvement of the catalytic activities was affected by various functional groups including pyridine group, N- methylimidazole group, triethylamine group. Among them [C4SO3Hpy]HSO4 with pyridine group showed better catalytic activity with the biodiesel yield of 94.5%, and still yielded more than 90% after six successive uses. The possible mechanism was also discussed by two reaction paths in detail.
基金A Project Funded by Jiangsu Natural Science Foundation of China(No.BK2011369)
文摘Lewis acidic ionic liquids were used to catalyze the reaction of epoxypropane with POCl3. Considering the lower cost and catalytic activities, we concluded that [Et3NH]Cl/AlCl3 was the most attractive ionic liquid from an economical point of view. But it would be easily inactivated because of sensitive to water and air. Moreover, it could not be reused easily because of difficulty recovery in the reaction. However, supporting [Et3NH]Cl/AlCl3 catalyst could resolve above problems. Supporting [Et3NH]Cl/ AlCl3 catalyst could be separated by filter easily and reused 5 times in 98% yield. Furthermore, the catalyst was applicable to other epoxy ether cleaving reactions.
基金Project supported by the National Natural Science Foundation of China (Nos. 20472062, 20672079).
文摘N-(α-Alkoxyalkyl)benzotriazoles were synthesized via the condensation of benzotriazole with various aldehydes and alcohols catalyzed by acidic ionic liquid [hmim]HSO4 at room temperature. The yield was up to 99%. This novel method was effective when triethoxymethane was utilized instead of alcohols. Moreover, acidic ionic liquid could be reused easily with no significant degradation of its catalytic activity.
基金This work was supported by the National Natural Science Foundation of China(21773068,21811530273,21573072)the National Key Research and Development Program of China(2017YFA0403102)Shanghai Leading Academic Discipline Project(B409).
文摘Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid.
文摘The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designed and synthesized via the free radical copolymerization of ionic liquid monomers,sodium p-styrenesulfonate,and crosslinkers,followed by acidification.The 31P nuclear magnetic resonance chemical shifts of adsorbed trimethylphosphine oxide indicated that the synthesized SAPILs presented moderate and single acid strength.The thermogravimetric analysis results in the temperature range of 300–345°C revealed that the synthesized SAPILs were more stable than the commercial resin Amberlite IR-120(H)(245°C).Cryogenic scanning electron microscopy testing demonstrated that SAPILs presented unique three-dimensional(3D)honeycomb structure in water,which was ascribed to the swelling-induced self-assembly of the molecules.Moreover,we used SAPILs with micron-sized honeycomb structure in water as catalysts for the hydrolysis of cyclohexyl acetate to cyclohexanol,and determined that their catalytic activity was much higher than that of homogeneous acid catalysts.The equilibrium concentrations of all reaction components inside and outside the synthesized SAPILs were quantitatively analyzed using a series of simulated reaction mixtures.Depending on the reaction mixture,the concentration of cyclohexyl acetate inside SAPIL-1 was 7.5–23.3 times higher than that outside of it,which suggested the high enrichment ability of SAPILs for cyclohexyl acetate.The excellent catalytic performance of SAPILs was attributed to their 3D honeycomb structure in water and high enrichment ability for cyclohexyl acetate,which opened up new avenues for designing highly efficient heterogeneous acid catalysts that could eventually replace conventional homogeneous acid catalysts.
文摘Lewis acidic guanidinium ionic liquid(LAGIL) 2c was used as a novel, efficient and recyclable catalyst for aminolysis of epoxides under solvent-free and room temperature conditions, giving the corresponding β-amino alcohols with moderate to excellent regioselectivity(up to 91:9) in high yields(up to 97%). In addition, LAGIL 2c was recycled three times without any loss of catalytic activity and selectivity to the product.
基金support from National Basic Research(973) Program of China(No.613740101)
文摘A novel polyethylene glycol (PEG)-200-based dicationic acidic ionic liquid (PEG200-DAIL) was used to synthesize HMX from DPT by nitrolysis with N2O5. It was found that either N2O5 or PEGzoo-DAIL could improve the yield. Furthermore, the combined use of PEG200-DAIL and N2O5 could increase the yield of HMX to 64% with the used quantity of HNO3 decreased dramatically.