期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solvent extraction of neodymium(Ⅲ) from acidic nitrate medium using Cyanex 921 in kerosene 被引量:7
1
作者 Nandita Panda Niharbala Devi Sujata Mishra 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第8期794-797,共4页
The extraction of neodymium(III) from acidic nitrate medium was investigated using Cyanex 921 as extractant in kerosene. The metal concentration in the aqueous phase before and after extraction was determined spectr... The extraction of neodymium(III) from acidic nitrate medium was investigated using Cyanex 921 as extractant in kerosene. The metal concentration in the aqueous phase before and after extraction was determined spectrophotometrically by Arsenazo III method. The complete equilibration was achieved in 15 rain. The effects of shaking time, nitric acid concentration, nitrate concentration, extractant concen- tration, and temperature on the extraction were studied. The extraction of Nd(III) was found to increase very slowly with increase in concen- tration of HNO3 in the range of 0.001-3.008 mol/L and then decreased when 0.01 mol/L HNO3 was used. The percentage of extraction was increased with increase in nitrate concentration from 0.01M).45 mol/L and then decreased when nitrate concentration increased to 0.5 mol/L. Quantitative extraction of Nd(III) (98%) was obtained from the aqueous phase containing 0.001 mol/L HNO3 and 0.1 mol/L KNO3 using 0.5 mol/L Cyanex 921. On the basis of slope analysis, the extracted complex in the organic phase was proposed to be Nd(NO3)3.2Cyanex 921. The extraction of Nd(III) was found to increase with increase in concentration of metal ion in the range of 0.0014).05 mol/L from 0.001 mol/L HNO3 and 0.1 mol/L KNO3 with 0.1 mol/L Cyanex 921. The percentage of extraction of neodymium was found to decrease with in- crease in temperature. From temperature variation studies, the negative value of AH indicated the extraction reaction to be exothermic and the negative value of AS indicated the formation of a stable complex, Almost 100% Nd(III) was recovered from the fully loaded organic phase using 0.002 mol/L H2SO4 and 0.01 mol/L HCl. 展开更多
关键词 extraction neodymium(III) acidic nitrate Cyanex 921 KEROSENE STRIPPING rare earths
原文传递
Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media 被引量:1
2
作者 Eun-kyoung Choi Kuy-hyun Park +2 位作者 Ho-bin Lee Misun Cho Samyoung Ahn 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第8期1696-1702,共7页
Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/γ-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by... Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/γ-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM, TEM-EDS. The metals were not distributed homogeneously on the surface of catalyst, although the total contents of both metals in particles agreed well with the theoretical values. Formic acid decomposition on the catalyst surface, its influence on solution pH and nitrate removal efficacy was investigated. The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd:Cu ratio (4:1) and two fold excess of formic acid. Formic acid decay patterns resembled those of nitrate removal, showing a linear relationship between kf (formic acid decay) and k (nitrate removal). Negligible amount of ammonia was detected, and no nitrite was detected, possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid, and due to the sustained release of H2 gas. 展开更多
关键词 formic acid catalytic nitrate reduction Pd:Cu/γ-alumina catalyst H2 supply
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部