The neuroexcitotoxic nonprotein amino acid β-N-oxalo-L-α, β-diaminopropionic acid (β-N-ODAP)and its isomer a-N-oxalo-L-α, β-diaminopropionic acid (α-N-ODAP)in Panax ginseng C. A. Meyer(cultivated ih Northeaster...The neuroexcitotoxic nonprotein amino acid β-N-oxalo-L-α, β-diaminopropionic acid (β-N-ODAP)and its isomer a-N-oxalo-L-α, β-diaminopropionic acid (α-N-ODAP)in Panax ginseng C. A. Meyer(cultivated ih Northeastern China), Panax quinquefolius L., Panax notoginseng F.H. Chen (cultivated in Southwestern China), Korean red ginseng and Jilin red ginseng were isolated and identified. Efficient separation and purification methods for β-N-ODAP and α-N-ODAP were developed.展开更多
The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albica...The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) were examined by capillary gas chromatography. On the basis of fatty acid composition, all strains could be differentiated as to species. These results indicate that capillary gas chromatographic analysis of cellular fatty acids is likely to be useful for rapid identification or grouping of newer isolates of yeast species.展开更多
Transgenerational effects of certain nutrients such as essential fatty acids are gaining increased attention in the field of human medicine and animal sciences as a new tool to improve health and animal performance du...Transgenerational effects of certain nutrients such as essential fatty acids are gaining increased attention in the field of human medicine and animal sciences as a new tool to improve health and animal performance during perinatal life.Omega-3(n-3)and omega-6(n-6)fatty acids are denoted by the position of the first double bond from methyl end of the hydrocarbon chain.Alpha-linolenic acid(18:3 n-3)and linoleic acid(18:2 n-6)are essential n-3 and n-6 fatty acids and cannot be synthesized by the vertebrates including chickens.Alpha-linolenic acid and linoleic acid are the parent fatty acids of long chain(>20–22C)n-3 and n-6 polyunsaturated fatty acids(PUFA)such as eicosapentaenoic acid(20:5 n-3,EPA),docosapentaenoic acid(22:5 n-3/or 22:5 n-6,DPA),docosahexaenoic acid(22:6 n-3,DHA)and arachidonic acid(20:4 n-6).As components of cell membrane phospholipids,PUFA serves as precursors of eicosa-noids,act as ligands for membrane receptors and transcription factors that regulate gene expression and are pivotal for normal chick growth and development.Considering the role of egg lipids as the sole source of essential fatty acids to the hatchling,dietary deficiencies or inadequate in ovo supply may have repercussions in tissue PUFA incorpora-tion,lipid metabolism,chick growth and development during pre and early post-hatch period.This review focus on studies showing how maternal dietary n-3 or n-6 fatty acids can lead to remodeling of long chain n-3 and n-6 PUFA in the hatching egg and progeny chick tissue phospholipid molecular species and its impact on chick growth and PUFA metabolism during early life.展开更多
p-Arsanilic acid(p-ASA) is widely used in China as livestock and poultry feed additive for promoting animal growth.The use of organoarsenics poses a potential threat to the environment because it is mostly excreted ...p-Arsanilic acid(p-ASA) is widely used in China as livestock and poultry feed additive for promoting animal growth.The use of organoarsenics poses a potential threat to the environment because it is mostly excreted by animals in its original form and can be transformed by UV–Vis light excitation.This work examined the initial rate and efficiency of p-ASA phototransformation under UV-C disinfection lamp.Several factors influencing p-ASA phototransformation,namely,p H,initial concentration,temperature,as well as the presence of Na Cl,NH4+,and humic acid,were investigated.Quenching experiments and LC–MS were performed to investigate the mechanism of p-ASA phototransformation.Results show that p-ASA was decomposed to inorganic arsenic(including As(Ⅲ) and As(V))and aromatic products by UV-C light through direct photolysis and indirect oxidation.The oxidation efficency of p-ASA by direct photosis was about 32%,and those by HOU and1O2 were 19% and 49%,respectively.Cleavage of the arsenic–benzene bond through direct photolysis,HOU oxidation or1O2 oxidation results in simultaneous formation of inorganic As(Ⅲ),As(IV),and As(V).Inorganic As(Ⅲ) is oxidized to As(IV) and then to As(V) by1O2 or HOU.As(IV) can undergo dismutation or simply react with oxygen to produce As(V) as well.Reactions of the organic moieties of p-ASA produce aniline,aminophenol and azobenzene derivatives as main products.The photoconvertible property of p-ASA implies that UV disinfection of wastewaters from poultry and swine farms containing p-ASA poses a potential threat to the ecosystem,especially agricultural environments.展开更多
Nitrogen dioxide(NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species(ROS) production and an...Nitrogen dioxide(NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species(ROS) production and antioxidant enzyme activity in Arabidopsis thaliana(Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m3NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll(Chl) content, and increased oxygen free radical(O2-)production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate(As A) and glutathione(GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage.展开更多
In this study, the anti-invasion effects of(-)-epigallocatechin-3-gallate(EGCG) mixed with ascorbic acid(Vc) on human lung carcinoma 95-D cells in vitro were examined and the synergism of the combination of EGCG...In this study, the anti-invasion effects of(-)-epigallocatechin-3-gallate(EGCG) mixed with ascorbic acid(Vc) on human lung carcinoma 95-D cells in vitro were examined and the synergism of the combination of EGCG and Vc was evaluated. Soft agar colony formation assay, cell migration assay, invasion assay, western blot analysis of NF-κB, in situ detection of cellular oxidative stress, and statistical analysis were assessed. The results showed that combining EGCG with Vc could inhibit clone forming rate of 95-D cell by 73.2%, reduce the migration ability of 95-D cell by 65.9%, and decrease the intracellular reactive oxygen species(ROS) level by 76.8%. The results of western blot proved that Vc enhanced the activity of EGCG in inhibiting NF-κB localization. It is speculated that the combination of EGCG and Vc can strongly suppress the proliferation and metastasis of lung carcinoma cells in a synergic manner, possibly with a mechanism associated with the scavenging of reactive oxygen species.展开更多
基金The project supported by National Natural Science Foundation of China
文摘The neuroexcitotoxic nonprotein amino acid β-N-oxalo-L-α, β-diaminopropionic acid (β-N-ODAP)and its isomer a-N-oxalo-L-α, β-diaminopropionic acid (α-N-ODAP)in Panax ginseng C. A. Meyer(cultivated ih Northeastern China), Panax quinquefolius L., Panax notoginseng F.H. Chen (cultivated in Southwestern China), Korean red ginseng and Jilin red ginseng were isolated and identified. Efficient separation and purification methods for β-N-ODAP and α-N-ODAP were developed.
文摘The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) were examined by capillary gas chromatography. On the basis of fatty acid composition, all strains could be differentiated as to species. These results indicate that capillary gas chromatographic analysis of cellular fatty acids is likely to be useful for rapid identification or grouping of newer isolates of yeast species.
基金Supported in part by the National Research Initiative of the USDA Cooperative State Research,Education and Extension Service,grant number 2004–35204-14654Oregon State University Experiment Station Hatch fund,Oregon State University Animal Health Fund.
文摘Transgenerational effects of certain nutrients such as essential fatty acids are gaining increased attention in the field of human medicine and animal sciences as a new tool to improve health and animal performance during perinatal life.Omega-3(n-3)and omega-6(n-6)fatty acids are denoted by the position of the first double bond from methyl end of the hydrocarbon chain.Alpha-linolenic acid(18:3 n-3)and linoleic acid(18:2 n-6)are essential n-3 and n-6 fatty acids and cannot be synthesized by the vertebrates including chickens.Alpha-linolenic acid and linoleic acid are the parent fatty acids of long chain(>20–22C)n-3 and n-6 polyunsaturated fatty acids(PUFA)such as eicosapentaenoic acid(20:5 n-3,EPA),docosapentaenoic acid(22:5 n-3/or 22:5 n-6,DPA),docosahexaenoic acid(22:6 n-3,DHA)and arachidonic acid(20:4 n-6).As components of cell membrane phospholipids,PUFA serves as precursors of eicosa-noids,act as ligands for membrane receptors and transcription factors that regulate gene expression and are pivotal for normal chick growth and development.Considering the role of egg lipids as the sole source of essential fatty acids to the hatchling,dietary deficiencies or inadequate in ovo supply may have repercussions in tissue PUFA incorpora-tion,lipid metabolism,chick growth and development during pre and early post-hatch period.This review focus on studies showing how maternal dietary n-3 or n-6 fatty acids can lead to remodeling of long chain n-3 and n-6 PUFA in the hatching egg and progeny chick tissue phospholipid molecular species and its impact on chick growth and PUFA metabolism during early life.
基金supported by the National Natural Science Foundation of China(Nos 51508423 and 21477090)
文摘p-Arsanilic acid(p-ASA) is widely used in China as livestock and poultry feed additive for promoting animal growth.The use of organoarsenics poses a potential threat to the environment because it is mostly excreted by animals in its original form and can be transformed by UV–Vis light excitation.This work examined the initial rate and efficiency of p-ASA phototransformation under UV-C disinfection lamp.Several factors influencing p-ASA phototransformation,namely,p H,initial concentration,temperature,as well as the presence of Na Cl,NH4+,and humic acid,were investigated.Quenching experiments and LC–MS were performed to investigate the mechanism of p-ASA phototransformation.Results show that p-ASA was decomposed to inorganic arsenic(including As(Ⅲ) and As(V))and aromatic products by UV-C light through direct photolysis and indirect oxidation.The oxidation efficency of p-ASA by direct photosis was about 32%,and those by HOU and1O2 were 19% and 49%,respectively.Cleavage of the arsenic–benzene bond through direct photolysis,HOU oxidation or1O2 oxidation results in simultaneous formation of inorganic As(Ⅲ),As(IV),and As(V).Inorganic As(Ⅲ) is oxidized to As(IV) and then to As(V) by1O2 or HOU.As(IV) can undergo dismutation or simply react with oxygen to produce As(V) as well.Reactions of the organic moieties of p-ASA produce aniline,aminophenol and azobenzene derivatives as main products.The photoconvertible property of p-ASA implies that UV disinfection of wastewaters from poultry and swine farms containing p-ASA poses a potential threat to the ecosystem,especially agricultural environments.
基金supported by the National Natural Science Foundation of China (Nos.21477070, 21377076)the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (Nos.20121401110003, 20131401110005)+2 种基金the Project for Science and Technology Development of Shanxi Province (No.20120313009-2)the Research Project supported by the Shanxi Scholarship Council of China (No.2012-009)the Program for the Top Young and Middle aged Innovative Talents of Higher Learning Institutions of Shanxi (TYMIT, No.20120201)
文摘Nitrogen dioxide(NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species(ROS) production and antioxidant enzyme activity in Arabidopsis thaliana(Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m3NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll(Chl) content, and increased oxygen free radical(O2-)production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate(As A) and glutathione(GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage.
基金Supported by the Product Project of Shanghai Engineering Center for Processing and Storage of Aquatic(11DZ2280300)
文摘In this study, the anti-invasion effects of(-)-epigallocatechin-3-gallate(EGCG) mixed with ascorbic acid(Vc) on human lung carcinoma 95-D cells in vitro were examined and the synergism of the combination of EGCG and Vc was evaluated. Soft agar colony formation assay, cell migration assay, invasion assay, western blot analysis of NF-κB, in situ detection of cellular oxidative stress, and statistical analysis were assessed. The results showed that combining EGCG with Vc could inhibit clone forming rate of 95-D cell by 73.2%, reduce the migration ability of 95-D cell by 65.9%, and decrease the intracellular reactive oxygen species(ROS) level by 76.8%. The results of western blot proved that Vc enhanced the activity of EGCG in inhibiting NF-κB localization. It is speculated that the combination of EGCG and Vc can strongly suppress the proliferation and metastasis of lung carcinoma cells in a synergic manner, possibly with a mechanism associated with the scavenging of reactive oxygen species.