Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that ...Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.展开更多
We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which...We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.展开更多
As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular mom...As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper,by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l_E and l_O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|l_E| ≠ |l_O|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for l_E=-l_O. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.展开更多
A study on the self-adaptive focusing of acoustical beam in the solid by Time Reversal (TR) method is presented. The theoretical analyses and experiments show that TR can compensate the path difference of sound pulse ...A study on the self-adaptive focusing of acoustical beam in the solid by Time Reversal (TR) method is presented. The theoretical analyses and experiments show that TR can compensate the path difference of sound pulse in solid, and generate the self-focusing of longitudinal and shear waves at the same time. The experimental values of the focusing processing gain agree with the theoretical values.展开更多
基金the National Natural Sciencefoundation of China (Grant No. 12174085)the FundamentalResearch Funds for the Central Universities (GrantNo. B220202018)+1 种基金the Basic Science (Natural Science) ResearchProject for the Universities of Jiangsu Province (GrantNo. 23KJD140002)Natural Science Foundation of Nantong(Grant No. JC2023081).
文摘Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774137 and 11404147)the Major Program of the National Natural Science Foundation of China(Grant No.51239005)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20140519 and BK20140523)the Jiangsu Qing Lan Project,Chinathe Practice Innovation Training Program Projects for Industrial Center of Jiangsu University,China
文摘We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Science and Technology Cooperation Projects of People’s Republic of China–Romania(Grant No.42-23)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper,by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l_E and l_O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|l_E| ≠ |l_O|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for l_E=-l_O. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.
基金This project is supported by National Natural Science Foundation of China and the President Foundationof Institute of Acoustic
文摘A study on the self-adaptive focusing of acoustical beam in the solid by Time Reversal (TR) method is presented. The theoretical analyses and experiments show that TR can compensate the path difference of sound pulse in solid, and generate the self-focusing of longitudinal and shear waves at the same time. The experimental values of the focusing processing gain agree with the theoretical values.