The frequent occurrence of rockburst and the difficulty in predicting were considered in deep engineering and underground engineering.In this work,laboratory experiments on rockburst under true triaxial conditions wer...The frequent occurrence of rockburst and the difficulty in predicting were considered in deep engineering and underground engineering.In this work,laboratory experiments on rockburst under true triaxial conditions were carried out with granite samples.Combined with the deformation characteristics of granite,acoustic emission(AE)technology was well applied in revealing the evolution law of micro-cracks in the process of rockburst.Based on the comprehensive analysis of acoustic emission parameters such as impact,ringing and energy,the phased characteristics of crack propagation and damage evolution in granite were obtained,which were consistent with the stages of rock deformation and failure.Subsequently,based on the critical point theory,the accelerated release characteristics of acoustic emission energy during rockburst were analyzed.Based on the damage theory,the damage evolution model of rock under different loading conditions was proposed,and the prediction interval of rock failure time was ascertained concurrently.Finally,regarding damage as an intermediate variable,the synergetic prediction model of rock failure time was constructed.The feasibility and validity of model were verified.展开更多
The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fib...The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.展开更多
基金Projects(52074294,51574246,51674008)supported by the National Natural Science Foundation of ChinaProjects(2017YFC0804201,2017YFC0603000)supported by the National Key Research and Development Program of ChinaProject(2011QZ01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The frequent occurrence of rockburst and the difficulty in predicting were considered in deep engineering and underground engineering.In this work,laboratory experiments on rockburst under true triaxial conditions were carried out with granite samples.Combined with the deformation characteristics of granite,acoustic emission(AE)technology was well applied in revealing the evolution law of micro-cracks in the process of rockburst.Based on the comprehensive analysis of acoustic emission parameters such as impact,ringing and energy,the phased characteristics of crack propagation and damage evolution in granite were obtained,which were consistent with the stages of rock deformation and failure.Subsequently,based on the critical point theory,the accelerated release characteristics of acoustic emission energy during rockburst were analyzed.Based on the damage theory,the damage evolution model of rock under different loading conditions was proposed,and the prediction interval of rock failure time was ascertained concurrently.Finally,regarding damage as an intermediate variable,the synergetic prediction model of rock failure time was constructed.The feasibility and validity of model were verified.
基金Funded by the National Natural Science Foundation of China(No.51009058)Postdoctoral Science Foundation of China(No.2011M501160)+1 种基金the University Natural Science Research Project of Jiangsu Province(No.13KJD560002)the Doctoral Research Start-up Fund of Jinling Institute of Technology(No.Jit-b-201321)
文摘The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.