The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
This work is dedicated to the experimental study of the shear properties of three-dimensional reinforced composites taking into account their structural features,in Iosipescu tests.Shear strains have been determined u...This work is dedicated to the experimental study of the shear properties of three-dimensional reinforced composites taking into account their structural features,in Iosipescu tests.Shear strains have been determined using Vic-3D non-contact three-dimensional digital optical system.The evolution of inhomogeneous strain fields on the surface of composite specimens of the structure under study has been analyzed.The variants of strain averaging in the specimen working area have been analyzed using Vic-3D tools.AMSY-6 acoustic emission system has been used to assess the structural integrity of composite materials under loading.展开更多
This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four lo...This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.展开更多
With the more complete acoustic emission(AE)catalog improved by the multi-channel AE matched-filter technique(MFT),we study the spatiotemporal evolution of the AE activities after laboratory stick-slip events incorpor...With the more complete acoustic emission(AE)catalog improved by the multi-channel AE matched-filter technique(MFT),we study the spatiotemporal evolution of the AE activities after laboratory stick-slip events incorporate with the slip data recorded by displacement transducers on an^1.5 m granite fault.The results show that the number of the AE events identified by MFT is about 9 times larger than that of the traditional method.A logarithmic expansion of early AE events along the fault strike is observed as a function of time,whereas the fault does not slip in the same manner.Thus,we related the expansion of the early AE events along the fault to the stress transfer caused by the adjacent AE events.Moreover,there is a good correlation between the cumulative number of the later AE events and the amount of fault slip.It suggests that the stress change caused by the continuous slip of the simulated fault after the stick-slip events response for the later AE events near or on the simulated fault.展开更多
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金the Russian Foundation for Basic Research within the Projects(Grants 19-31-90148 and 18-01-00763)The experimental studies of shear material properties were conducted within the State Assignment of the Ministry of Education and Science of the Russian Federation(9.7529.2017/9.10).
文摘This work is dedicated to the experimental study of the shear properties of three-dimensional reinforced composites taking into account their structural features,in Iosipescu tests.Shear strains have been determined using Vic-3D non-contact three-dimensional digital optical system.The evolution of inhomogeneous strain fields on the surface of composite specimens of the structure under study has been analyzed.The variants of strain averaging in the specimen working area have been analyzed using Vic-3D tools.AMSY-6 acoustic emission system has been used to assess the structural integrity of composite materials under loading.
文摘This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies.
基金supported by National Key R&D Program of China(2016YFE0109300)National Natural Science Foundation of China(41874061 and41802231)。
文摘With the more complete acoustic emission(AE)catalog improved by the multi-channel AE matched-filter technique(MFT),we study the spatiotemporal evolution of the AE activities after laboratory stick-slip events incorporate with the slip data recorded by displacement transducers on an^1.5 m granite fault.The results show that the number of the AE events identified by MFT is about 9 times larger than that of the traditional method.A logarithmic expansion of early AE events along the fault strike is observed as a function of time,whereas the fault does not slip in the same manner.Thus,we related the expansion of the early AE events along the fault to the stress transfer caused by the adjacent AE events.Moreover,there is a good correlation between the cumulative number of the later AE events and the amount of fault slip.It suggests that the stress change caused by the continuous slip of the simulated fault after the stick-slip events response for the later AE events near or on the simulated fault.