期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Reservoir heterogeneity analysis using multi-directional textural attributes from deep learning-based enhanced acoustic impedance inversion:A study from Poseidon,NW shelf Australia 被引量:1
1
作者 Anjali Dixit Animesh Mandal Shib Sankar Ganguli 《Energy Geoscience》 EI 2024年第2期202-213,共12页
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t... Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage. 展开更多
关键词 Seismic texture attributes Seismic acoustic impedance Multi-directional texture attributes Reservoir heterogeneity Reservoir characterization Poseidon field
下载PDF
OPTIMIZATION OF ACOUSTIC IMPEDANCE,GEOMETRIC STRUCTURE AND OPERATING CONDITION OF LINERS MOUNTED IN ENGINE DUCT 被引量:2
2
作者 Lu Yadong Wang Qingkuan(Institute of Engineering Thermophysics, Chinese Academy ofSciences, Beijing, China, 100080).Hu Zongan Cul Jiya (Beijig University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第3期193-203,共11页
Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise ... Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise reduction. Based upon the mode analysis method of sound propagation in a circular duct with multiple liners, a flexible tolerance method is used to optimize the acoustic parameters(impedance), geometric structure parameters(such as open area ratio, cavity depth and hole diameter) and operating condition parameters(such as blade passing frequency). The mathematical models for these kinds of optimization are presented here. The optimum values of the design variables are determined when the in-duct sound suppression approaches a maximum. It can be derived from the optimum results that the emphasis of the engineering optimization design of the perforated plate honey-comb structure should be placed on the optimum choice of the open area ratio and cavity depth. Some reference criteria for the engineering design of the multi-linings are also provided. 展开更多
关键词 engine inlets ducts LININGS aeroacoustics. acoustic impedance Optimization
下载PDF
Model-constrained and data-driven double-supervision acoustic impedance inversion
3
作者 Dong-Feng Zhao Na-Xia Yang +2 位作者 Jin-Liang Xiong Guo-Fa Li Shu-Wen Guo 《Petroleum Science》 SCIE EI CSCD 2023年第5期2809-2821,共13页
Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geoph... Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method. 展开更多
关键词 acoustic impedance inversion Model constraints Double supervision BiLSTM neural network Reservoir structure characterization
下载PDF
Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
4
作者 Yu-Lian Yang Jia-Bing Lin +4 位作者 Li-Ming Liu Xin-Hong Jia Wen-Yan Liang Shi-Rong Xu Li Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期375-380,共6页
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t... Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated. 展开更多
关键词 distributed acoustic impedance sensing forward stimulated Brillouin scattering(F-SBS) 2nd-order local spectrum
下载PDF
Petrologic composition model of the upper crust in Bohai Bay basin,China,based on Lamé impedances 被引量:1
5
作者 张唽 Loui sa L.H.Tsang +1 位作者 王仰华 赵兵 《Applied Geophysics》 SCIE CSCD 2009年第4期327-336,393,394,共12页
Seismic attributes, such as P- and S-wave velocity, Poisson's ratio, and acoustic impedances, all generally can be used for distinguishing different rock types. The nonuniqueness can be largely reduced using Lame imp... Seismic attributes, such as P- and S-wave velocity, Poisson's ratio, and acoustic impedances, all generally can be used for distinguishing different rock types. The nonuniqueness can be largely reduced using Lame impedances instead of acoustic impedances as additional constraints. We have followed this method to constitute a petrologic composition model of the upper crust in the Bohai Bay basin, China. We briefly review the seismic parameters used for discrimination of rock types and focus our attention on the sensitivity of different combinations of parameters to determine the composition of materials. Corrections for pressure and temperature are performed in order to compare elastic wave velocities and densities measured at room temperature and surface pressure in laboratory with those for representative rock parameters. In a second step, we find the rock classes in the tested area by contrasting known data to laboratory measurements on a variety of rock samples extracted in the area. The basic field data are P-wave velocity values collected along a seismic profile conducted in the Bozhong Depression. The different rock types belonging to a particular rock class are finally constrained by the seismic velocities, Poisson's ratio, density, acoustic impedance, and Lame imoedance related to the topmost 10 km of the Bohai Bav crust. 展开更多
关键词 seismic velocity Poisson's ratio acoustic and Lam6 impedances Bohai Bay
下载PDF
The application of elastic impedance inversion in reservoir prediction at the Jinan area of Tarim Oilfield 被引量:5
6
作者 Yang Jinhua Li Guofa +1 位作者 Liu Yang Jiang Weidong 《Applied Geophysics》 SCIE CSCD 2007年第3期201-206,共6页
The Triassic reservoir in the Jinan area of Tarim Oilfield consists largely of interbedded sand and shale. Because of the large overlap between sandstone and shale impedance, it is difficult to distinguish sandstone f... The Triassic reservoir in the Jinan area of Tarim Oilfield consists largely of interbedded sand and shale. Because of the large overlap between sandstone and shale impedance, it is difficult to distinguish sandstone from shale by acoustic impedance alone. Compared to acoustic impedance, elastic impedance contains more lithologic and physical information of the reservoir. Based on meticulous well-tie calibration, elastic impedance data volumes for 10°, 20°, and 30° emergence angles are obtained using pre-stack elastic impedance inversion. A non-linear statistical relationship between elastic impedance and shale content is set up by a PNN neural network. The non-linear mapping relationship is used to predict the reservoir shale content from elastic impedance, which will depict and predict the reservoir oil-bearing sands. 展开更多
关键词 acoustic impedance elastic impedance shale content PNN neural network non-linear relationship
下载PDF
Effect of Temperature on the Acoustic Reflection Characteristics of Seafloor Surface Sediments
7
作者 ZOU Dapeng YE Guican +3 位作者 LIU Wei SUN Han LI Jun XIAO Tibing 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期62-68,共7页
Because the sound speeds of seawater and seafloor sediment both increase with temperature,the influence of tempera-ture on the bottom reflection characteristics of seafloor sediments needs to be investigated.Based on ... Because the sound speeds of seawater and seafloor sediment both increase with temperature,the influence of tempera-ture on the bottom reflection characteristics of seafloor sediments needs to be investigated.Based on the calculation of the temperature-controlled experimental measurement data of typical seafloor surface sediment samples,the temperature-dependent acoustic characteristics,including acoustic impedance,acoustic impedance ratio between surface sediment and seawater,and reflection coefficient,were analyzed.The effective density fluid model was used to analyze and explain the reflection coefficient variation of surface sediments with temperature and predict the dispersion characteristics.Results show that the acoustic impedance of the seabed sediment increases with temperature,whereas the acoustic impedance ratio and acoustic reflection coefficient slightly decrease.The acoustic impedance,acoustic impedance ratio,and acoustic reflection coefficient of sandy,silty,and clayey sediments vary similarly with tem-perature variation.Moreover,the influence of temperature on these acoustic characteristics is independent of detection frequencies. 展开更多
关键词 reflection coefficient seafloor sediment TEMPERATURE acoustic impedance
下载PDF
Application of Scanning Acoustic Microscopy for Detection of Dental Caries Lesion
8
作者 Yukihiro Naganuma Kouki Hatori +7 位作者 Masahiro Iikubo Masatoshi Takahashi Yoshihiro Hagiwara Kazuto Kobayashi Atsushi Takahashi Kumi Hoshi Yoshifumi Saijo Keiichi Sasaki 《Open Journal of Stomatology》 2023年第1期12-24,共13页
Introduction: A scanning acoustic microscope (SAM) is an apparatus for imaging acoustic properties. This apparatus can non-invasively and rapidly evaluate the hardness of materials in the elastic region. This device s... Introduction: A scanning acoustic microscope (SAM) is an apparatus for imaging acoustic properties. This apparatus can non-invasively and rapidly evaluate the hardness of materials in the elastic region. This device shows great potential for the diagnosis of dental caries in the clinical setting. However, since the tissue elastic modulus measured using a SAM is a property of the elastic region and the Knoop hardness is a property of the plastic region, the hardness properties differ completely. Therefore, we investigated whether the acoustic impedance measured using a SAM is related to the Knoop hardness, which is used as the standard for removal of carious dentin. Method: Polished sections were prepared from 20 extracted carious wisdom teeth. The acoustic impedance and Knoop hardness were measured for each section. In addition to comparing carious and healthy dentin in SAM images, we evaluated the difference between the carious and healthy dentin in terms of the acoustic impedance and Knoop hardness. We also evaluated the correlation between the Knoop hardness and acoustic impedance. Results: The SAM images were visualized as two-dimensional color images based on the acoustic impedance values. The mean acoustic impedance of carious dentin was significantly lower than that of healthy dentin, showing a similar trend as Knoop hardness. A strong correlation was observed between the two. Discussion: The acoustic impedance values obtained through acoustic microscopy differed significantly between carious and sound dentin. Both types of dentins were visualized using two-dimensional color images. A strong correlation was observed between the acoustic impedance value, which indicates the hardness of the elastic region, and the Knoop hardness, which indicates the hardness of the plastic region. The results of the present study indicate that acoustic impedance accurately reflects the hardness of dentin. 展开更多
关键词 Scanning acoustic Microscope acoustic impedance CARIES Knoop Hardness
下载PDF
Topology optimization of chiral metamaterials with application to underwater sound insulation
9
作者 Chao WANG Honggang ZHAO +3 位作者 Yang WANG Jie ZHONG Dianlong YU Jihong WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1119-1138,共20页
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam... Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation. 展开更多
关键词 chiral metamaterial topology optimization underwater sound insulation low acoustic impedance sound transmission loss(STL)
下载PDF
Inversion of Seabed Geotechnical Properties in the Arctic Chukchi Deep Sea Basin Based on Time Domain Adaptive Search Matching Algorithm
10
作者 AN Long XU Chong +5 位作者 XING Junhui GONG Wei JIANG Xiaodian XU Haowei LIU Chuang YANG Boxue 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期933-942,共10页
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained... The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement. 展开更多
关键词 time domain adaptive search matching algorithm acoustic impedance inversion sedimentary grain size Arctic Ocean Chukchi Deep Sea Basin
下载PDF
Simultaneous Waveform Inverse Modelling for Litho-Fluid Prediction in an Old Marginal, “Agbbo”Field, Onshore Niger Delta, Nigeria
11
作者 Charles Chibueze Ugbor Peter Ogobi Odong Chukwuemeka Austine Okonkwo 《Journal of Geoscience and Environment Protection》 2024年第5期40-59,共20页
Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with un... Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field. 展开更多
关键词 Simultaneous Waveform Inversion Lithofacies Fluid Type Rock Physics HYDROCARBON acoustic impedance Mu-Rho Reservoir
下载PDF
Fracture detection by using full azimuth P wave attributes 被引量:16
12
作者 Qu Shouli Ji Yuxin Wang Xin Wang Xiuling Chen xinrong Shen Guoqiang 《Applied Geophysics》 SCIE CSCD 2007年第3期238-243,共6页
A type of specific fractured hydrocarbon reservoir, a shale fractured reservoir, exists in the Shengli oilfield. Due to very small porosity of this type, low sensitivity to the variation of petrochemical property para... A type of specific fractured hydrocarbon reservoir, a shale fractured reservoir, exists in the Shengli oilfield. Due to very small porosity of this type, low sensitivity to the variation of petrochemical property parameters, and strong anisotropy, it is very difficult to explore for them. So far, there is no set of mature methods for recognition of direction, distribution, and density of the fractures by an integrated analysis of geologic, geophysical, well log, drilling data, and etc. This paper presents a new method for acoustic impedance variation with azimuth (IPVA), based on existing fracture detection methods. Seismic acquisition, processing, and recognition techniques were developed for detecting directional vertical fractures using multi-azimuth P wave data in combination with the seismic and geological features of shale fractures in the Luojia area. The IPVA research is carried out for recognizing the distribution, strike, and density of fractures based on the study of velocity variation with azimuth (VVA) and amplitude variation with azimuth (AVA) for full azimuth P wave data at different CMP positions. Through practical application in the Luojia area, primary results have been obtained which verifies that the IPVA method provides good potential for quantitative detection of parallel, high angle, shale fractures. 展开更多
关键词 Shale fractures VELOCITY AMPLITUDE acoustic impedance P wave full azimuth
下载PDF
Jet formation in shock-heavy gas bubble interaction 被引量:7
13
作者 Zhi-Gang Zhai Ting Si +1 位作者 Li-Yong Zou Xi-Sheng Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第1期24-35,共12页
The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work. The process of a shock interacting with a krypton or a SF6 b... The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work. The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D. As a validation, the experiments of a SF6 bubble accelerated by a planar shock were performed. The results indicate that, due to the mismatch of acoustic impedance, the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition. With respect to the same bubble, the manner of jet formation is also distinctly different under different shock strengths. The disparities of the acoustic impedance result in different effects of shock focusing in the bubble, and different behaviors of shock wave inside and outside the bubble. The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation. Moreover, the analy- sis of the vorticity deposition, and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation. It is concluded that the pres- sure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction. 展开更多
关键词 Shock-bubble interaction - Heavy gas bubble acoustic impedance JET
下载PDF
Research on Hydrodynamic Interference Suppression of Bottom-Mounted Monitoring Platform with Fairing Structure 被引量:3
14
作者 WANG Zhen ZHENG Yi +3 位作者 MAO Yu-feng WANG Ya-zhou YU Yan-ting LIU Hong-ning 《China Ocean Engineering》 SCIE EI CSCD 2018年第1期51-61,共11页
In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the pl... In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure(there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 d B. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining. 展开更多
关键词 bottom-mounted FAIRING hydrodynamic interference acoustic impedance transmission loss
下载PDF
Acoustic impedance characteristics of linear compressors 被引量:3
15
作者 Zhi-hua GAN Long-yi WANG +3 位作者 Sheng-ying ZHAO Yu-jing SONG Wei-wei WANG Yi-nong WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第7期494-503,共10页
The acoustic field of a linear compressor serves to deliver the compression work to the load, such as the connected cold head of a cryocooler; it plays an equivalently important role as the electrical and mechanical p... The acoustic field of a linear compressor serves to deliver the compression work to the load, such as the connected cold head of a cryocooler; it plays an equivalently important role as the electrical and mechanical parts, especially in the impedance match issue. This paper studies the acoustic impedance characteristics of a linear compressor. The parameters including the current, the piston displacement, the pressure amplitude, the electrical power dissipation, the power factor, the pressure-volumetric (PV) power delivered, and the efficiency are theoretically and experimentally investigated. Different from previous theoretical studies, optimization for the operations away from the resonance is also included. More general optimization results imply relevance between thermoacoustic engines and linear compressors. The predicted results are validated by the experiments performed on a linear compressor with an adjustable resistive-capacitive (RC) acoustic load. The comparisons between the calculations and the measurements are presented and analyzed. The results provide deeper insight into the mechanism of the linear compressor and the impedance match in a cryocooler system. 展开更多
关键词 Linear compressor acoustic impedance Resistive-capacitive (RC) load
原文传递
An Investigation on the Relationship between Secretory Otitis Media andAllergy in 2702 Pupils 被引量:1
16
作者 Cheng Lei,et al. ACTA ACADEMIAE MEDICINAE NANJING,1994,14 (1):13-14 《The Journal of Biomedical Research》 CAS 1994年第1期67-67,共1页
in order to elucidate the relationship between secretory otitis media (SOM) and allergy,the tympanogram and allergic skin test with house dust, mite, and Japanese cedar pollen allergen were made in 2702 pupils in Shir... in order to elucidate the relationship between secretory otitis media (SOM) and allergy,the tympanogram and allergic skin test with house dust, mite, and Japanese cedar pollen allergen were made in 2702 pupils in Shiraoi, Hokkaido, Japan. The correlation between the tympanogram type and the results of allergic skin was analyzed. This study suggests that there is no positive relationship between SOM and allergy. 展开更多
关键词 otitis media SEROUS HYPERSENSITIVITY acoustic impedance tests skin tests
下载PDF
SATURATION DIVING WITH HELIOX TO 350 METERS OBSERVATION ON HEARING THRESHOLD, BRAINSTEM EVOKED RESPONSE AND ACOUSTIC IMPEDANCE 被引量:1
17
作者 汪磊 姜伟 +1 位作者 龚锦涵 郑向阳 《Chinese Medical Journal》 SCIE CAS CSCD 1994年第12期56-60,共5页
Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of bearing, earache daring compression. Ex... Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of bearing, earache daring compression. Examination showed that the threshold of tower frequency range of hearing was elevated because of the masking effect of the noise in the hyperbaric chamber. Changes in waveform and latency of brainstem evoked response were due to changes in sound wave transmission affected by the chamber pressure and a poor ratio of signal to noise in the hyperbaric environment with heliox. All these changes were transient After leaving the chamber, the hearing threshold and brainstem evoked response returned to normal. Besides, there were no changes in tympanogram, acoustic compliance and stapedius reflex before and after diving. This indicated the designed speed of compression and decompression in the experiment caused no damage to the divers' acoustic system, and the functions of their Eustachain tubes, middle and inner ears were normal during the diving test 展开更多
关键词 In BRAINSTEM EVOKED RESPONSE AND acoustic impedance SATURATION DIVING WITH HELIOX TO 350 METERS OBSERVATION ON HEARING THRESHOLD
原文传递
Seismic sedimentology of conglomeratic sandbodies in lower third member of Shahejie Formation (Palaeogene) in Shengtuo area, East China 被引量:2
18
作者 袁勇 张金亮 +2 位作者 李存磊 孟宁宁 李岩 《Journal of Central South University》 SCIE EI CAS 2014年第12期4630-4639,共10页
The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, ne... The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, near sources and intensive tectonic activity. This work was focused on the sedimentary feature of the glutenite segment to conduct the seismic sedimentology research. The near-shore subaqueous fans and its relative gravity channel and slump turbidite fan depositions were identified according to observation and description of cores combining with the numerous data of seismic and logging. Then, the depositional model was built depending on the analysis of palaeogeomorphology. The seismic attributes which are related to the hydrocarbon but relative independent were chosen to conduct the analysis, the reservoir area of the glutenite segment was found performing a distribution where the amplitude value is relatively higher, and finally the RMS amplitude attribute was chosen to conduct the attribute predicting. At the same time, the horizontal distribution of the sedimentary facies was analyzed qualitatively. At last, the sparse spike inversion method was used to conduct the acoustic impedance inversion, and the inversion result can distinguish glutenite reservoir which is greater than 5 m. This method quantitatively characterizes the distribution area of the favorable reservoir sand. 展开更多
关键词 Shengtuo area near-shore subaqueous fan gravity flow channel slump turbidite fan sedimentary mode acoustic impedance inversion
下载PDF
The Role of PZT in Flexible 1-3 Piezoelectric Composite for Smart Structure
19
作者 Ren Huaishi Fan Huiqing Zhang Jie Wang Wei 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期588-589,共2页
Piezoelectric composite materials have the ability to perform both sensing and actuating functions.It is a viable candidate for smart actuation in underwater noise controlling with its higher coupling factor and lower... Piezoelectric composite materials have the ability to perform both sensing and actuating functions.It is a viable candidate for smart actuation in underwater noise controlling with its higher coupling factor and lower acoustic impedance, when the piezoelectric rods are inclined to control its both the shear and the compression damping characteristics.In this paper, a simple physical model of 1-3 piezoelectric composite is advanced for maximizing the electromechanical coupling factor,the acoustic impedance,and the hydrophone figure of merit. 展开更多
关键词 piezoelectric composite electromechanical coupling factor the hydrophone figure of merit acoustic impedance
下载PDF
Parameter Study on a Composite Sound-Absorbing Structure Liner in Elevator Shafts
20
作者 Ting Qu Bo Wang Hequn Min 《Journal of Renewable Materials》 EI 2023年第9期3433-3446,共14页
With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic ... With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise. 展开更多
关键词 Elevator shafts sound-absorbing liner porous material flow resistivity acoustic impedance
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部