An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acousti...An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acoustic pressure loading.Based on large deflection finite element formulation,the nonlinear equations of motion of stiffened plates are obtained.To reduce the computation,a reduced order model of the structures is established.Then the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program(DMAP).For the stiffened plates,a finite element model of beam and plate assembly is established,in which the nodes of beam elements are shared with shell elements,and the offset and section properties of the beam are set.The presented method can capture the root-mean-square(RMS) of the stress responses of shell and beam elements of stiffened plates,and analyze the stress distribution of the stiffened surface and the unstiffened surface,respectively.Finally,the statistical dynamic response results obtained by linear and EL methods are compared.It is shown that the proposed method can be used to analyze the geometrically nonlinear random responses of stiffened plates.The geometric nonlinearity plays an important role in the vibration response of stiffened plates,particularly at high acoustic pressure loading.展开更多
In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both s...In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both static and dynamic loads were applied to the rock specimens to investigate the mechanism of fracture evolution around the cavities for different lateral pressure coefficients.In addition,characteristics of acoustic emission(AE) associated with fracture evolution were simulated.Finally,the evolution and interaction of fractures between multiple cavities were investigated with consideration of stress redistribution and transference in compressive and tensile stress fields.The numerically simulated results reproduced primary tensile,remote,and shear crack fractures,which are in agreement with the experimental results.Moreover,numerical results suggested that both compressive and tensile waves could influence the propagation of tensile cracks;in particular,the reflected tensile wave accelerated the propagation of tensile cracks.展开更多
基金supported by the National Natural Science Foundations of China(Nos.11872079,11572109)the Science and Technology Project of Hebei Education Department(No.QN2019135)Advanced Talents Incubation Program of the Hebei University(No.521000981285)。
文摘An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acoustic pressure loading.Based on large deflection finite element formulation,the nonlinear equations of motion of stiffened plates are obtained.To reduce the computation,a reduced order model of the structures is established.Then the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program(DMAP).For the stiffened plates,a finite element model of beam and plate assembly is established,in which the nodes of beam elements are shared with shell elements,and the offset and section properties of the beam are set.The presented method can capture the root-mean-square(RMS) of the stress responses of shell and beam elements of stiffened plates,and analyze the stress distribution of the stiffened surface and the unstiffened surface,respectively.Finally,the statistical dynamic response results obtained by linear and EL methods are compared.It is shown that the proposed method can be used to analyze the geometrically nonlinear random responses of stiffened plates.The geometric nonlinearity plays an important role in the vibration response of stiffened plates,particularly at high acoustic pressure loading.
基金granted by the National Science Foundation (NSF) under Grant CMMI-0408390 and NSF CAREER Award CMMI-0644552the American Chemical Society Petroleum Research Foundation under Grant PRF-44468-G9+3 种基金National Natural Science Foundation of China under Grant No.51050110143granted by Huoyingdong Educational Foundation under Grant No.114024Jiangsu Natural Science Foundation under Grant No.SBK200910046granted by Jiangsu Postdoctoral Foundation under Grant No.0901005C
文摘In this paper,a numerical code,RFPA2D(rock failure process analysis),was used to simulate the initiation and propagation of fractures around a pre-existing single cavity and multiple cavities in brittle rocks.Both static and dynamic loads were applied to the rock specimens to investigate the mechanism of fracture evolution around the cavities for different lateral pressure coefficients.In addition,characteristics of acoustic emission(AE) associated with fracture evolution were simulated.Finally,the evolution and interaction of fractures between multiple cavities were investigated with consideration of stress redistribution and transference in compressive and tensile stress fields.The numerically simulated results reproduced primary tensile,remote,and shear crack fractures,which are in agreement with the experimental results.Moreover,numerical results suggested that both compressive and tensile waves could influence the propagation of tensile cracks;in particular,the reflected tensile wave accelerated the propagation of tensile cracks.