A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the groundstate energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy ...A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the groundstate energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy of the acoustic polarons in two and three dimensions are obtained. The 3D results agree with those obtained by using the Feynman path-integral approach. It is found that the critical coupling constant of the transition from the quasifree state to the self-trapped state in the 2D case is much smaller than in the 3D case for a given cutoff wave-vector. The theory has been used to judge the possibility of the self-trapping for several real materials. The results indicate that the self-trappings of the electrons in AlN and the holes in AlN and GaN are expected to be observed in 2D systems.展开更多
基金Project supported by the Doctoral Program Foundation of Institutions of Higher Education China (Grant No 20040126003) and the Natural Science Foundation of Inner Mongol of China (Grant No 200408020101).
文摘A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the groundstate energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy of the acoustic polarons in two and three dimensions are obtained. The 3D results agree with those obtained by using the Feynman path-integral approach. It is found that the critical coupling constant of the transition from the quasifree state to the self-trapped state in the 2D case is much smaller than in the 3D case for a given cutoff wave-vector. The theory has been used to judge the possibility of the self-trapping for several real materials. The results indicate that the self-trappings of the electrons in AlN and the holes in AlN and GaN are expected to be observed in 2D systems.