期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fast multipole accelerated boundary element method for the Helmholtz equation in acoustic scattering problems 被引量:2
1
作者 LI ShanDe GAO GuiBing +2 位作者 HUANG QiBai LIU WeiQi CHEN Jun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1405-1410,共6页
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements... We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems. 展开更多
关键词 fast multipole method boundary element method Helmholtz equation acoustic scattering problems.
原文传递
Comparisons between Isotropic and Anisotropic TV Regularizations in Inverse Acoustic Scattering
2
作者 Ping Liu 《Engineering(科研)》 CAS 2023年第2期106-113,共8页
This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regul... This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regularizations perform better in the sense of edge preserving. While anisotropic TV regularization will cause distortions along axes. To minimize the energy function with isotropic and anisotropic regularization terms, we use split Bregman scheme. We do several 2D numerical experiments to validate the above arguments. 展开更多
关键词 Inverse acoustic scattering problem REGULARIZATION Isotropic TV Anisotropic TV ILL-POSEDNESS
下载PDF
An Adaptive Finite Element PML Method for the Acoustic Scattering Problems in Layered Media 被引量:1
3
作者 Xue Jiang Yu Qi Jianhua Yuan 《Communications in Computational Physics》 SCIE 2019年第1期266-288,共23页
The paper concerns the numerical solution for the acoustic scattering problems in a two-layer medium.The perfectly matched layer(PML)technique is adopted to truncate the unbounded physical domain into a bounded comput... The paper concerns the numerical solution for the acoustic scattering problems in a two-layer medium.The perfectly matched layer(PML)technique is adopted to truncate the unbounded physical domain into a bounded computational domain.An a posteriori error estimate based adaptive finite element method is developed to solve the scattering problem.Numerical experiments are included to demonstrate the efficiency of the proposed method. 展开更多
关键词 acoustic scattering problems layered media perfectly matched layer adaptive finite element method
原文传递
An Adaptive Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems 被引量:4
4
作者 Zhiming Chen Xinming Wu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第2期113-137,共25页
The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In t... The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In this paper an adaptive uniaxial PML technique for solving the time harmonic Helmholtz scattering problem is devel- oped.The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates.The adaptive finite element method based on a posteriori error estimate is proposed to solve the PML equa- tion which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorb- ing layer.Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.In particular,it is demonstrated that the PML layer can be chosen as close to one wave-length from the scatterer and still yields good accuracy and efficiency in approximating the far fields. 展开更多
关键词 Adaptivity uniaxial perfectly matched layer a posteriori error analysis acoustic scattering problems
下载PDF
An application of radiation boundary condition to scattering problem of acoustic waves in fluids
5
作者 JIANG Jiaxiang(University of Science and Technology of China, Hefei 230026) 《Chinese Journal of Acoustics》 1991年第3期237-243,共7页
A numerical method of solving acoustic wave scattering pnblem in fluids is described. Radiation boundary condition (RBC) obtained by factorization method of Helmholtz equation is applied to transforming the exterior b... A numerical method of solving acoustic wave scattering pnblem in fluids is described. Radiation boundary condition (RBC) obtained by factorization method of Helmholtz equation is applied to transforming the exterior boundary value problem in unbounded region into one in a finite region. Combined with RBC and scatterer surface boundary condition, Helmholtz equation is solved numerically by the finite difference method. Computational results for sphere and prolate spheroidal scatterers are in excellent agreement with eigenfunction solutions and much better than the results of OSRC method. 展开更多
关键词 An application of radiation boundary condition to scattering problem of acoustic waves in fluids
原文传递
FullApertureReconstruction of theAcoustic Far-Field Pattern from Few Measurements
6
作者 Helene Barucq Chokri Bekkey Rabia Djellouli 《Communications in Computational Physics》 SCIE 2012年第2期647-659,共13页
We propose a numerical procedure to extend to full aperture the acoustic farfield pattern(FFP)when measured in only few observation angles.The reconstruction procedure is a multi-step technique that combines a total v... We propose a numerical procedure to extend to full aperture the acoustic farfield pattern(FFP)when measured in only few observation angles.The reconstruction procedure is a multi-step technique that combines a total variation regularized iterative method with the standard Tikhonov regularized pseudo-inversion.The proposed approach distinguishes itself from existing solution methodologies by using an exact representation of the total variation which is crucial for the stability and robustness of Newton algorithms.We present numerical results in the case of two-dimensional acoustic scattering problems to illustrate the potential of the proposed procedure for reconstructing the full aperture of the FFP from very few noisy data such as backscattering synthetic measurements. 展开更多
关键词 acoustic scattering problem limited aperture inverse obstacle problem ill-posed problem total variation Tikhonov regularization Newton method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部