Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ...Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value.展开更多
To detect weak underwater acoustic signals radiated by submarines and other underwater equipment,an effective line spectrum enhancement algorithm based on Kalman filter and FFT processing is proposed.The proposed algo...To detect weak underwater acoustic signals radiated by submarines and other underwater equipment,an effective line spectrum enhancement algorithm based on Kalman filter and FFT processing is proposed.The proposed algorithm first determines the frequency components of the weak underwater signal and then filters the signal to enhance the line spectrum,thereby improving the signal-to-noise ratio(SNR).This paper discussed two cases:one is a simulated signal consisting of a dual-frequency sinusoidal periodic signal and Gaussian white noise,and the signal is received after passing through a Rayleigh fading channel;the other is a ship signal recorded from the South China Sea.The results show that the line spectrum of the underwater acoustic signal could be effectively enhanced in both cases,and the filtered waveform is smoother.The analysis of simulated signals and ship signal reflects the effectiveness of the proposed algorithm.展开更多
Since the simulation underwater acoustic signal is used in the semi-object simulation experiment of underwater weapons, it has great impression upon simulation fidelity. It is asked that whether simulation signals can...Since the simulation underwater acoustic signal is used in the semi-object simulation experiment of underwater weapons, it has great impression upon simulation fidelity. It is asked that whether simulation signals can replace the real signal effectually. Considering the randomness of signals, the interval estimation of feature parameters of simulation signals is made. By comparing the obtained confidence interval with the corresponding accept interval, the concept of similarity coefficient of simulation signals is given. By making a statistical analysis for similarity coefficient, the uniformity information of simulation signals is extracted, and the fuzzy number which expresses the fuzzy uniformity level of simu- lation signals is obtained. The analysis method on fuzzy uniformity of simulation underwater acoustic signals is presented. It is indi- cated by the application in simulation of target radiated-noises that the method is suitable and effectual for the simulation research on underwater acoustic signals, and the analysis result may provide support for decision-making relative to perfecting simulation sys- tems and applying simulation signals.展开更多
Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, t...Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals.展开更多
In the exploration,tracking and positioning of underwater targets,it is necessary to perform frequency domain analysis and correlation calculation on the underwater acoustic signals of the target radiation.In a strong...In the exploration,tracking and positioning of underwater targets,it is necessary to perform frequency domain analysis and correlation calculation on the underwater acoustic signals of the target radiation.In a strong noise environment,the target signal may be overwhelmed by noise,resulting in an inability to effectively identify the target.Aiming at this problem,this paper presents a method of signal-noise separation by combining Fourier denoising with wavelet transform to realize underwater acoustic signal extraction in a strong noise environment.The combination algorithm of Fourier coefficient threshold adjustment and wavelet threshold transform is designed,and performance of the algorithm is tested.Simulation results show that the combination algorithm can effectively extract underwater acoustic signals when signal-to-noise ratio(SNR)is-15 dB,which can improve the SNR to 8.2 dB.展开更多
The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is bas...The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.展开更多
The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herei...The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.展开更多
For the first time in the world, underwater acoustic transmission of images, human voice, data and texts between vehicle under 7000 m depth and surface ship was accomplished by underwater acoustic communication system...For the first time in the world, underwater acoustic transmission of images, human voice, data and texts between vehicle under 7000 m depth and surface ship was accomplished by underwater acoustic communication system of manned deep submersible Jiaolong'. In this paper, signal processing in underwater acoustic communication system for manned deep submersible "Jiaolong" is introduced. (1) Four communication methods are integrated to meet different needs: 1) coherent underwater acoustic communication, with a variable transmission rate from 5 kbps to 15 kbps, to transmit images. 2) Non-coherent underwater acoustic com- munication, with a transmission rate 300 bps, to transmit texts, instructions, and sensor data. 3) Spread spectrum underwater acoustic communication, with a transmission rate 16 bps, to transmit instructions. 4) Underwater voice communication, using single sideband modulation to transmit hmnan voice. (2) Signal processing method in coherent communication mainly consists of concatenation of decision feedback equalizer and Turbo decoder, and wavelet based image compression with fixed length coding. In the equalizer, Doppler compensation, multi- channel combining and equalizer coefficients updating are all using fast self-optimized adaptive algorithm. (3) A linear hydrophone array is lowered from the mother ship to certain depth, and spatial diversity combining technology is adopted. (4) Diving trials of "Jiaolong" were carried out in Pacific Ocean. The communication range can cover nearly all ocean depth. One optical/acoustic image can be transmitted in 7 or 14 seconds.展开更多
Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenate...Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenated code of the nonbinary LDPC code and the constant weight code is proposed for noncoherent communication which can late be iteratively decoded in the probability domain.Without information of channel amplitude or phase in the receiver,statistic parameters of the respective signal and noise bins were estimated based on the moment estimation method,the posterior probabilities of the constant weight code words were further calculated,and the nonbinary LDPC code was decoded with the nonbinary factor graph algorithm.It is verified by simulations that by utilizing the proposed concatenated code and its processing algorithm,gap to channel capacity curve is reduced by 3 dB when compared to the existing method.Underwater communication experiments were carried out in both deep ocean(vertical communication,5 km)and shallow lake(horizontal communication,near 3 km,delay spread larger than 50 ms),in which the signal frequency band was 6 kHz to10 kHz,and the data transmission rate Was 357 bps.The proposed scheme can work properly in both experiments with a signal-to-noise ratio threshold of 2 dB.The performance of the proposed algorithm Was well verified by the experiments.展开更多
The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets...The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.展开更多
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金supported by the National Natural Science Foundation of China(Grant No.51709228)。
文摘Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value.
基金supported by the National Natural Science Foundation of China(No.11574250,No.11874302).
文摘To detect weak underwater acoustic signals radiated by submarines and other underwater equipment,an effective line spectrum enhancement algorithm based on Kalman filter and FFT processing is proposed.The proposed algorithm first determines the frequency components of the weak underwater signal and then filters the signal to enhance the line spectrum,thereby improving the signal-to-noise ratio(SNR).This paper discussed two cases:one is a simulated signal consisting of a dual-frequency sinusoidal periodic signal and Gaussian white noise,and the signal is received after passing through a Rayleigh fading channel;the other is a ship signal recorded from the South China Sea.The results show that the line spectrum of the underwater acoustic signal could be effectively enhanced in both cases,and the filtered waveform is smoother.The analysis of simulated signals and ship signal reflects the effectiveness of the proposed algorithm.
文摘Since the simulation underwater acoustic signal is used in the semi-object simulation experiment of underwater weapons, it has great impression upon simulation fidelity. It is asked that whether simulation signals can replace the real signal effectually. Considering the randomness of signals, the interval estimation of feature parameters of simulation signals is made. By comparing the obtained confidence interval with the corresponding accept interval, the concept of similarity coefficient of simulation signals is given. By making a statistical analysis for similarity coefficient, the uniformity information of simulation signals is extracted, and the fuzzy number which expresses the fuzzy uniformity level of simu- lation signals is obtained. The analysis method on fuzzy uniformity of simulation underwater acoustic signals is presented. It is indi- cated by the application in simulation of target radiated-noises that the method is suitable and effectual for the simulation research on underwater acoustic signals, and the analysis result may provide support for decision-making relative to perfecting simulation sys- tems and applying simulation signals.
文摘Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals.
基金Applied Basic Research Project of Shanxi Province(Nos.201601D011035,201701D121067)Higher Education Technology Innovation Project of Shanxi Province(No.201804011)。
文摘In the exploration,tracking and positioning of underwater targets,it is necessary to perform frequency domain analysis and correlation calculation on the underwater acoustic signals of the target radiation.In a strong noise environment,the target signal may be overwhelmed by noise,resulting in an inability to effectively identify the target.Aiming at this problem,this paper presents a method of signal-noise separation by combining Fourier denoising with wavelet transform to realize underwater acoustic signal extraction in a strong noise environment.The combination algorithm of Fourier coefficient threshold adjustment and wavelet threshold transform is designed,and performance of the algorithm is tested.Simulation results show that the combination algorithm can effectively extract underwater acoustic signals when signal-to-noise ratio(SNR)is-15 dB,which can improve the SNR to 8.2 dB.
基金Project(11174235)supported by the National Natural Science Foundation of ChinaProject(3102014JC02010301)supported by the Fundamental Research Funds for the Central Universities,China
文摘The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.
基金Supported by the National Natural Science Foundation of China(No.62033011)Science and Technology Project of Hebei Province(No.216Z1704G,No.20310401D)。
文摘The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.
基金supported by the Chinese National 863 Projects(2002AA401004,2009AA093301,2009AA093601)
文摘For the first time in the world, underwater acoustic transmission of images, human voice, data and texts between vehicle under 7000 m depth and surface ship was accomplished by underwater acoustic communication system of manned deep submersible Jiaolong'. In this paper, signal processing in underwater acoustic communication system for manned deep submersible "Jiaolong" is introduced. (1) Four communication methods are integrated to meet different needs: 1) coherent underwater acoustic communication, with a variable transmission rate from 5 kbps to 15 kbps, to transmit images. 2) Non-coherent underwater acoustic com- munication, with a transmission rate 300 bps, to transmit texts, instructions, and sensor data. 3) Spread spectrum underwater acoustic communication, with a transmission rate 16 bps, to transmit instructions. 4) Underwater voice communication, using single sideband modulation to transmit hmnan voice. (2) Signal processing method in coherent communication mainly consists of concatenation of decision feedback equalizer and Turbo decoder, and wavelet based image compression with fixed length coding. In the equalizer, Doppler compensation, multi- channel combining and equalizer coefficients updating are all using fast self-optimized adaptive algorithm. (3) A linear hydrophone array is lowered from the mother ship to certain depth, and spatial diversity combining technology is adopted. (4) Diving trials of "Jiaolong" were carried out in Pacific Ocean. The communication range can cover nearly all ocean depth. One optical/acoustic image can be transmitted in 7 or 14 seconds.
基金supported by the Chinese National 863 Projects(2002AA401004,2009AA093301,2009AA093601)
文摘Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenated code of the nonbinary LDPC code and the constant weight code is proposed for noncoherent communication which can late be iteratively decoded in the probability domain.Without information of channel amplitude or phase in the receiver,statistic parameters of the respective signal and noise bins were estimated based on the moment estimation method,the posterior probabilities of the constant weight code words were further calculated,and the nonbinary LDPC code was decoded with the nonbinary factor graph algorithm.It is verified by simulations that by utilizing the proposed concatenated code and its processing algorithm,gap to channel capacity curve is reduced by 3 dB when compared to the existing method.Underwater communication experiments were carried out in both deep ocean(vertical communication,5 km)and shallow lake(horizontal communication,near 3 km,delay spread larger than 50 ms),in which the signal frequency band was 6 kHz to10 kHz,and the data transmission rate Was 357 bps.The proposed scheme can work properly in both experiments with a signal-to-noise ratio threshold of 2 dB.The performance of the proposed algorithm Was well verified by the experiments.
文摘The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.