The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
The fourth order MacCormack scheme with fourth viscous term is used to improve the shocked solutions for sound propagation in varying cross area and hard-wall ducts with transonic flow. The artificial viscous coeffici...The fourth order MacCormack scheme with fourth viscous term is used to improve the shocked solutions for sound propagation in varying cross area and hard-wall ducts with transonic flow. The artificial viscous coefficient is given out by an empirical formula. It is shown from three calculation examples of acoustic shock waves that the new method is much better than the second order MacCormack method which is the best one of second order schemes. Moreover, CPU times of both methods are almost the same.展开更多
The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dime...The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional(3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.展开更多
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
基金Supported by National Natural Science Foundation of China
文摘The fourth order MacCormack scheme with fourth viscous term is used to improve the shocked solutions for sound propagation in varying cross area and hard-wall ducts with transonic flow. The artificial viscous coefficient is given out by an empirical formula. It is shown from three calculation examples of acoustic shock waves that the new method is much better than the second order MacCormack method which is the best one of second order schemes. Moreover, CPU times of both methods are almost the same.
文摘The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional(3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.