This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm ...This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.展开更多
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi...Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.展开更多
Prepulse inhibition (PPI) of the startle response is a psychophysiological measure of sensorimotor gating believed to be cross-modal between different sensory systems. We analyzed the tactile startle response (TSR...Prepulse inhibition (PPI) of the startle response is a psychophysiological measure of sensorimotor gating believed to be cross-modal between different sensory systems. We analyzed the tactile startle response (TSR) and PPI of TSR (tPPI), using light as a prepulse stimulus, in the mouse strains A/J and C57BL/6J and 36 recombinant congenic strains derived from them. Parental strains were significantly different for TSR, but were comparable for tPPI. Among the congenic strains, variation for TSR was significant in both genetic backgrounds, but that of tPPI was significant only for the C57BL/6J background. Provisional mapping for loci modulating TSR and tPPI was carried out. Using mapping data from our previous study on acoustic startle responses (ASR) and PPI of ASR (aPPI), no common markers for aPPI and tPPI were identified. However, some markers were significantly associated with both ASR and TSR, at least in one genetic background. These results indicate cross-modal genetic regulation for the startle response but not for PPI, in these mouse strains.展开更多
Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of bearing, earache daring compression. Ex...Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of bearing, earache daring compression. Examination showed that the threshold of tower frequency range of hearing was elevated because of the masking effect of the noise in the hyperbaric chamber. Changes in waveform and latency of brainstem evoked response were due to changes in sound wave transmission affected by the chamber pressure and a poor ratio of signal to noise in the hyperbaric environment with heliox. All these changes were transient After leaving the chamber, the hearing threshold and brainstem evoked response returned to normal. Besides, there were no changes in tympanogram, acoustic compliance and stapedius reflex before and after diving. This indicated the designed speed of compression and decompression in the experiment caused no damage to the divers' acoustic system, and the functions of their Eustachain tubes, middle and inner ears were normal during the diving test展开更多
In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core...In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core is considered. Suppose the inner cavity and outer space of the structure are filled with air and fluid mediums, the mechanical response of the underwater structure is calculated with Galerkin method while the acoustic response is investigated by means of the Helmholtz integral. Some numerical examples are given and the effect of geometrical size and material parameters on mechanical and acoustic response is discussed.展开更多
To explore a more convenient method for measuring the focused ultrasound power, a piezoelectric ceramic plate was used to receive ultrasonic signal directly. Due to an acoustic force acts on the surface of piezoelectr...To explore a more convenient method for measuring the focused ultrasound power, a piezoelectric ceramic plate was used to receive ultrasonic signal directly. Due to an acoustic force acts on the surface of piezoelectric ceramic plate, the piezoelectric response was obtained by means of electromechanical analogy, which was composed of voltage response caused by forced vibration and high frequency attenuation response caused by natural vibration. The conversion relationship between output signal of piezoelectric ceramic plate and acoustic power of transducer was analyzed. The envelope of output piezoelectric signal was extracted in twice, and a voltage amplitude curve with sinusoidal distribution that could describe the changes of acoustic power was obtained. Under different drive voltage of transducer, the maximum peak voltage of envelope curve was found respectively. Their squared values were made a linear fitting with acoustic power measured by acoustic power meter, and then the proportional coefficient of theoretical relational expression was calibrated. The experimental results are in good agreement with the theory. The relative error between calibrated theoretical acoustic power and that measured by acoustic power meter was less than 8.7%. The paper can provide a guideline for measuring acoustic power of transducer by using piezoelectric signal.展开更多
The low frequency vibration response of a specimen in acoustic fatigue tests depends not only on the dynamic characteristics and the boundary conditions of the specimen itself, but also on the test unit which couples ...The low frequency vibration response of a specimen in acoustic fatigue tests depends not only on the dynamic characteristics and the boundary conditions of the specimen itself, but also on the test unit which couples the specimen to a given sound field. Further, the latter can even be dominant instead the former in some circumstances. This fact is shown in the paper by using the experimental results and the theoretical analysis of the acoustic-induced vibration of a boundary clamped rectangular thin plate. In analysing the systems of acoustic fatigue test, an approach of electro-mechano-acoustical analogous circuit is used. The application of the approach can give an estimation of the effects on the low frequency vibration modes of various parameters in a system quantitatively. This supplies a theoretical basis and a means for the rational layout of acoustic fatigue tests.展开更多
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects.However,the use of exogenous bone marrow mesenchymal stem cells(BMSCs)still faces many challenges such as limited sour...Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects.However,the use of exogenous bone marrow mesenchymal stem cells(BMSCs)still faces many challenges such as limited sources and potential risks.It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration.Here,we designed an acoustically responsive scaffold(ARS)and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes(BSC).The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound(p-US)irradiation at optimized acoustic parameters,recruiting the endogenous BMSCs to the bone defected or BSC site.Accompanied by the daily p-US irradiation for 14 days,the alginate hydrogel was degraded,resulting in the exposure of ARS to these recruited host stem cells.Then another set of sinusoidal continuous wave ultrasound(s-US)irradiation was applied to excite the ARS intrinsic resonance,forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force,by which these recruited endogenous stem cells would be captured on the scaffold,greatly promoting them to adhesively grow for in situ bone tissue regeneration.Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs.展开更多
The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans.A nine blade rotor has been operated at free discharge conditions and in four geometrica...The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans.A nine blade rotor has been operated at free discharge conditions and in four geometrical configurations in which different kinds of tonal noise generating mechanisms are present:large-scale inlet turbulent structures,tip-gap flow,turbulent wakes,and rotor-stator interaction.The measurements have been taken in a hemi-anechoic chamber at constant rotational speed and,in order to vary the acoustic source strength,during low angular acceleration,linear speed ramps.In order to avoid erroneous quantitative evaluations if the acoustic propagation effects are not considered,the acoustic response functions of the different test configurations have been computed by means of the spectral decomposition method.Then,the properties of the tonal noise generating mechanisms have been studied.To this aim,the constant-Strouhal number SPL,obtained by means of measurements taken during the speed ramps,have been compared with the propagation function.Finally,the analysis of the phase of the acoustic pressure has allowed to distinguish between random and deterministic tonal noise generating mechanisms and to collect information about the presence of important propagation effects.展开更多
More and more oilfields are using acoustic technology to enhance oil recovery.In order to know the mechanism of acoustic oil recovery technology,the sound radiator of a new downhole vibration device is modeled and ana...More and more oilfields are using acoustic technology to enhance oil recovery.In order to know the mechanism of acoustic oil recovery technology,the sound radiator of a new downhole vibration device is modeled and analyzed.Based on the theoretical background,this paper firstly analyzes the acoustic mechanism for the oil reservoir and then makes a acoustic response analysis on the sound radiator model for frequency and time-domain investigation by using professional acoustic simulation softwareeLMS Virtual.lab Acoustics,finally calculates the acoustic transmission loss in the downhole oil reservoir.The research reveals that firstly,acoustic waves have influences on the oil&water fluidity in the oil reservoir,the oil pressure gradient and the interfacial tension of capillary;secondly,the acoustic radiation power and sound pressure of field point attain a peak on the natural frequency of the sound radiator;thirdly,with the acoustic impact,the sound pressure of oil reservoir would fluctuate so as to improve the oil recovery ratio;the last but not the least one is both the sound pressure of oil reservoir point and the transmission loss of rock have a positive correlation with the vibration frequency.Therefore,it is of great importance for the research of vibration frequency and structure optimization of sound radiator.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.52174092,51904290,52004272,52104125,42372328,and U23B2091)Natural Science Foundation of Jiangsu Province,China(Nos.BK20220157 and BK20240209)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)Xuzhou Science and Technology Project,China(Nos.KC21033 and KC22005)Yunlong Lake Laboratory of Deep Underground Science and Engineering Project,China(No.104023002)the Graduate Innovation Program of China University of Mining and Technology(No.2023WLTCRCZL052)。
文摘This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.
基金Supported by the Natural Science Foundation of Hebei Province under Grant No E2012201084the National University Students’ Innovative Training Program under Grant No 201410075004
文摘Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.
文摘Prepulse inhibition (PPI) of the startle response is a psychophysiological measure of sensorimotor gating believed to be cross-modal between different sensory systems. We analyzed the tactile startle response (TSR) and PPI of TSR (tPPI), using light as a prepulse stimulus, in the mouse strains A/J and C57BL/6J and 36 recombinant congenic strains derived from them. Parental strains were significantly different for TSR, but were comparable for tPPI. Among the congenic strains, variation for TSR was significant in both genetic backgrounds, but that of tPPI was significant only for the C57BL/6J background. Provisional mapping for loci modulating TSR and tPPI was carried out. Using mapping data from our previous study on acoustic startle responses (ASR) and PPI of ASR (aPPI), no common markers for aPPI and tPPI were identified. However, some markers were significantly associated with both ASR and TSR, at least in one genetic background. These results indicate cross-modal genetic regulation for the startle response but not for PPI, in these mouse strains.
文摘Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of bearing, earache daring compression. Examination showed that the threshold of tower frequency range of hearing was elevated because of the masking effect of the noise in the hyperbaric chamber. Changes in waveform and latency of brainstem evoked response were due to changes in sound wave transmission affected by the chamber pressure and a poor ratio of signal to noise in the hyperbaric environment with heliox. All these changes were transient After leaving the chamber, the hearing threshold and brainstem evoked response returned to normal. Besides, there were no changes in tympanogram, acoustic compliance and stapedius reflex before and after diving. This indicated the designed speed of compression and decompression in the experiment caused no damage to the divers' acoustic system, and the functions of their Eustachain tubes, middle and inner ears were normal during the diving test
基金supported by the National Natural Science Foundation of China(No.11372105)the New Century Excellent Talents Program in University(No.NCET-13-0184)
文摘In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core is considered. Suppose the inner cavity and outer space of the structure are filled with air and fluid mediums, the mechanical response of the underwater structure is calculated with Galerkin method while the acoustic response is investigated by means of the Helmholtz integral. Some numerical examples are given and the effect of geometrical size and material parameters on mechanical and acoustic response is discussed.
基金supported by the National Science Foundation of China(11274404,81201102)Municipal Education Commission Science Foundation of Chongqing(KJ1500204)
文摘To explore a more convenient method for measuring the focused ultrasound power, a piezoelectric ceramic plate was used to receive ultrasonic signal directly. Due to an acoustic force acts on the surface of piezoelectric ceramic plate, the piezoelectric response was obtained by means of electromechanical analogy, which was composed of voltage response caused by forced vibration and high frequency attenuation response caused by natural vibration. The conversion relationship between output signal of piezoelectric ceramic plate and acoustic power of transducer was analyzed. The envelope of output piezoelectric signal was extracted in twice, and a voltage amplitude curve with sinusoidal distribution that could describe the changes of acoustic power was obtained. Under different drive voltage of transducer, the maximum peak voltage of envelope curve was found respectively. Their squared values were made a linear fitting with acoustic power measured by acoustic power meter, and then the proportional coefficient of theoretical relational expression was calibrated. The experimental results are in good agreement with the theory. The relative error between calibrated theoretical acoustic power and that measured by acoustic power meter was less than 8.7%. The paper can provide a guideline for measuring acoustic power of transducer by using piezoelectric signal.
文摘The low frequency vibration response of a specimen in acoustic fatigue tests depends not only on the dynamic characteristics and the boundary conditions of the specimen itself, but also on the test unit which couples the specimen to a given sound field. Further, the latter can even be dominant instead the former in some circumstances. This fact is shown in the paper by using the experimental results and the theoretical analysis of the acoustic-induced vibration of a boundary clamped rectangular thin plate. In analysing the systems of acoustic fatigue test, an approach of electro-mechano-acoustical analogous circuit is used. The application of the approach can give an estimation of the effects on the low frequency vibration modes of various parameters in a system quantitatively. This supplies a theoretical basis and a means for the rational layout of acoustic fatigue tests.
基金National Key R&D Program of China(2020YFA0908800)National Natural Science Foundation of China(81871376,32171365,82071927,81771853,81571674)+6 种基金Guangzhou Science and Technology Program Project(202002030104,202102080128,202201020284)Talent Research Foundation of Guangdong Second Provincial General Hospital(YN-2018-002)Youth Research Foundation of Guangdong Second Provincial General Hospital(YQ-2019-011)The science foundation of Guangdong Second Provincial General Hospital(TJGC-2021002)Natural Science Foundation of Guangdong Province(2021A1515011260,2018A030313824)Shenzhen Science and Technology Innovation Committee(JCYJ20190812171820731)Research Project of Traditional Chinese Medicine Bureau of Guangdong Provincial.
文摘Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects.However,the use of exogenous bone marrow mesenchymal stem cells(BMSCs)still faces many challenges such as limited sources and potential risks.It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration.Here,we designed an acoustically responsive scaffold(ARS)and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes(BSC).The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound(p-US)irradiation at optimized acoustic parameters,recruiting the endogenous BMSCs to the bone defected or BSC site.Accompanied by the daily p-US irradiation for 14 days,the alginate hydrogel was degraded,resulting in the exposure of ARS to these recruited host stem cells.Then another set of sinusoidal continuous wave ultrasound(s-US)irradiation was applied to excite the ARS intrinsic resonance,forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force,by which these recruited endogenous stem cells would be captured on the scaffold,greatly promoting them to adhesively grow for in situ bone tissue regeneration.Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs.
基金Università di Genova for the financial support to the present work
文摘The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans.A nine blade rotor has been operated at free discharge conditions and in four geometrical configurations in which different kinds of tonal noise generating mechanisms are present:large-scale inlet turbulent structures,tip-gap flow,turbulent wakes,and rotor-stator interaction.The measurements have been taken in a hemi-anechoic chamber at constant rotational speed and,in order to vary the acoustic source strength,during low angular acceleration,linear speed ramps.In order to avoid erroneous quantitative evaluations if the acoustic propagation effects are not considered,the acoustic response functions of the different test configurations have been computed by means of the spectral decomposition method.Then,the properties of the tonal noise generating mechanisms have been studied.To this aim,the constant-Strouhal number SPL,obtained by means of measurements taken during the speed ramps,have been compared with the propagation function.Finally,the analysis of the phase of the acoustic pressure has allowed to distinguish between random and deterministic tonal noise generating mechanisms and to collect information about the presence of important propagation effects.
基金Fund Project:The Graduate Fund of Southwest Petroleum University(CX2014SY02).
文摘More and more oilfields are using acoustic technology to enhance oil recovery.In order to know the mechanism of acoustic oil recovery technology,the sound radiator of a new downhole vibration device is modeled and analyzed.Based on the theoretical background,this paper firstly analyzes the acoustic mechanism for the oil reservoir and then makes a acoustic response analysis on the sound radiator model for frequency and time-domain investigation by using professional acoustic simulation softwareeLMS Virtual.lab Acoustics,finally calculates the acoustic transmission loss in the downhole oil reservoir.The research reveals that firstly,acoustic waves have influences on the oil&water fluidity in the oil reservoir,the oil pressure gradient and the interfacial tension of capillary;secondly,the acoustic radiation power and sound pressure of field point attain a peak on the natural frequency of the sound radiator;thirdly,with the acoustic impact,the sound pressure of oil reservoir would fluctuate so as to improve the oil recovery ratio;the last but not the least one is both the sound pressure of oil reservoir point and the transmission loss of rock have a positive correlation with the vibration frequency.Therefore,it is of great importance for the research of vibration frequency and structure optimization of sound radiator.