A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used....A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.展开更多
In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto--opfic modulators (UFBG-AOM). The simu...In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto--opfic modulators (UFBG-AOM). The simulation results demon- strate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-l) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.展开更多
The way by which one can make sure the operating mode of the modulation is by observing the Comsol results of the designed model of proposed acousto-optic modulator (AOM). These results include the pressure distributi...The way by which one can make sure the operating mode of the modulation is by observing the Comsol results of the designed model of proposed acousto-optic modulator (AOM). These results include the pressure distribution, sound pressure distribution, stress distribution at piezoelectric, far-field analysis that describes the diffracted light orders, and electric potential versus light frequency. Throughout the simulating process of modulator operating using Comsol, it begins when the RF is power by a voltage of 100 V, the light is then split into first ordered diffraction, which implies that the modulator is in the operating mode. The use of semiconductor materials is due to its smaller gap that easily transfers the energy that leads to generating first order diffraction when they provided a voltage power. It mentioned that zero order diffraction indicates the modulator does not run;other orders are appearing with increasing the frequency of light leading to decrease of the efficiency of the modulator performance.展开更多
A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond sig...A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.展开更多
We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved withou...We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved without using optical amplifiers and optical dispersion compensation modules. A wavelength tuning range of 11.5 nm and a 3 dB bandwidth greater than 10 GHz over the entire wavelength tuning range were obtained.展开更多
文摘A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.
基金supported by the National Natural Science Foundation of China(Grant No.61275076)
文摘In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto--opfic modulators (UFBG-AOM). The simulation results demon- strate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-l) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.
文摘The way by which one can make sure the operating mode of the modulation is by observing the Comsol results of the designed model of proposed acousto-optic modulator (AOM). These results include the pressure distribution, sound pressure distribution, stress distribution at piezoelectric, far-field analysis that describes the diffracted light orders, and electric potential versus light frequency. Throughout the simulating process of modulator operating using Comsol, it begins when the RF is power by a voltage of 100 V, the light is then split into first ordered diffraction, which implies that the modulator is in the operating mode. The use of semiconductor materials is due to its smaller gap that easily transfers the energy that leads to generating first order diffraction when they provided a voltage power. It mentioned that zero order diffraction indicates the modulator does not run;other orders are appearing with increasing the frequency of light leading to decrease of the efficiency of the modulator performance.
基金supported by the National Natural Science Foundation of China (61378022)the National Natural Science Foundation of China for Youths (61205145)+2 种基金the Fundamental Research Funds of Shandong University (2014JC032)the China Postdoctoral Science Foundation (2013M541901)Independent Innovation Foundation of Shandong University, IIFSDU (2013HW013 and 2014TB011)
文摘A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.
基金supported by the National Key Research and Development Program of China(Nos.2016YFB0402301 and 2017YFF0206103)the National Natural Science Foundation of China(Nos.61320106013,61635010,61474112,61574137,and 61504170)
文摘We report 20 Gb/s transmission of four-level pulse amplitude modulation (PAM) signal using a directly modulated tunable distributed Bragg reflector (DBR) laser. Transmission distance over 20 km was achieved without using optical amplifiers and optical dispersion compensation modules. A wavelength tuning range of 11.5 nm and a 3 dB bandwidth greater than 10 GHz over the entire wavelength tuning range were obtained.