High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to...Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.展开更多
In recent years,ultra-wide bandgap β-Ga_(2)O_(3) has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices.In semiconductor industrial,thermal treatment has bee...In recent years,ultra-wide bandgap β-Ga_(2)O_(3) has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices.In semiconductor industrial,thermal treatment has been widely utilized as a convenient and effective approach for substrate property modulation and device fabrication.Thus,a thorough summary of β-Ga_(2)O_(3) substrates and devices behaviors after high-temperature treatment should be significant.In this review,we present the recent advances in modulating properties of β-Ga_(2)O_(3) substrates by thermal treatment,which include three major applications:(ⅰ)tuning surface electrical properties,(ⅱ)modifying surface morphology,and(ⅲ)oxidating films.Meanwhile,regulating electrical contacts and handling with radiation damage and ion implantation have also been discussed in device fabrication.In each category,universal annealing conditions were speculated to figure out the corresponding problems,and some unsolved questions were proposed clearly.This review could construct a systematic thermal treatment strategy for various purposes and applications of β-Ga_(2)O_(3).展开更多
Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and ad...Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields.展开更多
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe...Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.展开更多
Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at roo...Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at room temperature.However,how to obtain a large room-temperature negative MR effect in them remains to be studied.In this paper,by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side,we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment,but not in a static low magnetic field environment.Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory,we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field.This theoretical analytical model is further confirmed by regulating the geometry size of the device.Our work sheds light on the development of novel magnetic sensing,magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.展开更多
With the arrival of the era of artificial intelligence(AI)and big data,the explosive growth of data has raised higher demands on computer hardware and systems.Neuromorphic techniques inspired by biological nervous sys...With the arrival of the era of artificial intelligence(AI)and big data,the explosive growth of data has raised higher demands on computer hardware and systems.Neuromorphic techniques inspired by biological nervous systems are expected to be one of the approaches to breaking the von Neumann bottleneck.Piezotronic neuromorphic devices modulate electrical transport characteristics by piezopotential and directly associate external mechanical motion with electrical output signals in an active manner,with the capability to sense/store/process information of external stimuli.In this review,we have presented the piezotronic neuromorphic devices(which are classified into strain-gated piezotronic transistors and piezoelectric nanogenerator-gated field effect transistors based on device structure)and discussed their operating mechanisms and related manufacture techniques.Secondly,we summarized the research progress of piezotronic neuromorphic devices in recent years and provided a detailed discussion on multifunctional applications,including bionic sensing,information storage,logic computing,and electrical/optical artificial synapses.Finally,in the context of future development,challenges,and perspectives,we have discussed how to modulate novel neuromorphic devices with piezotronic effects more effectively.It is believed that the piezotronic neuromorphic devices have great potential for the next generation of interactive sensation/memory/computation to facilitate the development of the Internet of Things,AI,biomedical engineering,etc.展开更多
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat...Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazo...The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s.展开更多
Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assi...Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assist devices (VADs) in the face of adverse events (AEs) using a resilience-based approach. The objective is to develop a method for integrating resilience attributes into VAD control systems, employing dynamic risk analysis and control strategies. Results: The outcomes include a resilient control architecture enabling anticipatory, regenerative, and degenerative actions in response to AEs. A method of applied resilience (MAR) based on dynamic risk management and resilience attribute analysis was proposed. Conclusion: Dynamic integration between medical and technical teams allows continuous adaptation of control systems to meet patient needs over time, improving reliability, safety, and effectiveness of VADs, with potential positive impact on the health of heart failure patients.展开更多
Mandibular advancement devices(MADs)are widely used treatments for obstructive sleep apnea.MADs function by advancing the lower jaw to open the upper airway.To increase patient comfort,most patients allow the mouth to...Mandibular advancement devices(MADs)are widely used treatments for obstructive sleep apnea.MADs function by advancing the lower jaw to open the upper airway.To increase patient comfort,most patients allow the mouth to be opened.However,not all systems maintain the lower jaw in a forward position during mouth opening,which results in the production of a retrusion that favors the collapse of the upper airway.Furthermore,the kinematic behavior of the mechanism formed by the mandible-device assembly depends on jaw morphology.This means that,during mouth opening,some devices cause lower jaw protrusion in some patients,but cause its retraction in others.In this study,we report the behavior of well-known devices currently on themarket.To do so,we developed a kinematic model of the lower jawdevice assembly.Thismodelwas validated for all devices analyzed using a high-resolution camera system.Our results show that some of the devices analyzed here did not produce the correct behavior during patient mouth opening.展开更多
The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide sy...The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.展开更多
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec...With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.展开更多
Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) ...Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.展开更多
With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signatu...With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices.展开更多
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ...The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
基金financial support from the National Natural Science Foundation of China(22105106)the Natural Science Foundation of Jiangsu Province of China(BK20210603)+1 种基金the Nanjing Science and Technology Innovation Project for overseas Students(NJKCZYZZ2022–05)the Start-up Funding from NUPTSF(NY221003)。
文摘Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.
基金the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang,China(No.2023C01193)the National Natural Science Foundation of China(Nos.52202150 and 22205203)+2 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61721005)the Fundamental Research Funds for the Central Universities(Nos.226-2022-00200 and 226-2022-00250)the National Program for Support of Topnotch Young Professionals。
文摘In recent years,ultra-wide bandgap β-Ga_(2)O_(3) has emerged as a fascinating semiconductor material due to its great potential in power and photoelectric devices.In semiconductor industrial,thermal treatment has been widely utilized as a convenient and effective approach for substrate property modulation and device fabrication.Thus,a thorough summary of β-Ga_(2)O_(3) substrates and devices behaviors after high-temperature treatment should be significant.In this review,we present the recent advances in modulating properties of β-Ga_(2)O_(3) substrates by thermal treatment,which include three major applications:(ⅰ)tuning surface electrical properties,(ⅱ)modifying surface morphology,and(ⅲ)oxidating films.Meanwhile,regulating electrical contacts and handling with radiation damage and ion implantation have also been discussed in device fabrication.In each category,universal annealing conditions were speculated to figure out the corresponding problems,and some unsolved questions were proposed clearly.This review could construct a systematic thermal treatment strategy for various purposes and applications of β-Ga_(2)O_(3).
基金financially supported by the Research Impact Fund (project no. R4015-21)Research Fellow Scheme (project no. RFS2122-4S03)+3 种基金Strategic Topics Grant (project no. STG1/E-401/23- N) from the Hong Kong Research Grants Council (RGC)the CUHK internal grantsthe support from Multi-Scale Medical Robotics Centre (MRC),InnoHK, at the Hong Kong Science Parkthe SIAT–CUHK Joint Laboratory of Robotics and Intelligent Systems
文摘Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields.
基金supported by the National Natural Science Foundation of China(52322210,52172144,22375069,21825103,and U21A2069)National Key R&D Program of China(2021YFA1200501)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818102215033,JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory(OVL2023PY007).
文摘Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.
基金Project supported by the Special Funding for Talents of Three Gorges University(Grant No.8230202)the National Natural Science Foundation of China(Grant No.12274258)National Key R&D Program of China(Grant No.2016YFA0401003).
文摘Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at room temperature.However,how to obtain a large room-temperature negative MR effect in them remains to be studied.In this paper,by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side,we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment,but not in a static low magnetic field environment.Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory,we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field.This theoretical analytical model is further confirmed by regulating the geometry size of the device.Our work sheds light on the development of novel magnetic sensing,magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.
基金financially supported by the National Natural Science Foundation of China(52073031,22008151)the National Key Research and Development Program of China(2021YFB3200304)+2 种基金Beijing Nova Program(Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the‘Hundred Talents Program’of the Chinese Academy of Sciences。
文摘With the arrival of the era of artificial intelligence(AI)and big data,the explosive growth of data has raised higher demands on computer hardware and systems.Neuromorphic techniques inspired by biological nervous systems are expected to be one of the approaches to breaking the von Neumann bottleneck.Piezotronic neuromorphic devices modulate electrical transport characteristics by piezopotential and directly associate external mechanical motion with electrical output signals in an active manner,with the capability to sense/store/process information of external stimuli.In this review,we have presented the piezotronic neuromorphic devices(which are classified into strain-gated piezotronic transistors and piezoelectric nanogenerator-gated field effect transistors based on device structure)and discussed their operating mechanisms and related manufacture techniques.Secondly,we summarized the research progress of piezotronic neuromorphic devices in recent years and provided a detailed discussion on multifunctional applications,including bionic sensing,information storage,logic computing,and electrical/optical artificial synapses.Finally,in the context of future development,challenges,and perspectives,we have discussed how to modulate novel neuromorphic devices with piezotronic effects more effectively.It is believed that the piezotronic neuromorphic devices have great potential for the next generation of interactive sensation/memory/computation to facilitate the development of the Internet of Things,AI,biomedical engineering,etc.
基金This work is supported by the National Natural Science Foundation of China(No.61904151)the National Key Research and Development Program of China(No.2021YFA1200803)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020).
文摘Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
基金supported by a grant of the Ministry of Research,Innovation and Digitization,CNCS–UEFISCDI,project number PNIII-P1-1.1-TE-2021-1110PNCDI III,contract number TE 83/2022,and project number PN-III-P2-2.1-PED-2019-3520PNCDI III,contract number 438PED/2020。
文摘The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s.
文摘Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assist devices (VADs) in the face of adverse events (AEs) using a resilience-based approach. The objective is to develop a method for integrating resilience attributes into VAD control systems, employing dynamic risk analysis and control strategies. Results: The outcomes include a resilient control architecture enabling anticipatory, regenerative, and degenerative actions in response to AEs. A method of applied resilience (MAR) based on dynamic risk management and resilience attribute analysis was proposed. Conclusion: Dynamic integration between medical and technical teams allows continuous adaptation of control systems to meet patient needs over time, improving reliability, safety, and effectiveness of VADs, with potential positive impact on the health of heart failure patients.
基金supported by the research contracts 806/31.4830 and 806/31.5511 between the private company Laboratorio Ortoplus S.L.and the University of Malaga.
文摘Mandibular advancement devices(MADs)are widely used treatments for obstructive sleep apnea.MADs function by advancing the lower jaw to open the upper airway.To increase patient comfort,most patients allow the mouth to be opened.However,not all systems maintain the lower jaw in a forward position during mouth opening,which results in the production of a retrusion that favors the collapse of the upper airway.Furthermore,the kinematic behavior of the mechanism formed by the mandible-device assembly depends on jaw morphology.This means that,during mouth opening,some devices cause lower jaw protrusion in some patients,but cause its retraction in others.In this study,we report the behavior of well-known devices currently on themarket.To do so,we developed a kinematic model of the lower jawdevice assembly.Thismodelwas validated for all devices analyzed using a high-resolution camera system.Our results show that some of the devices analyzed here did not produce the correct behavior during patient mouth opening.
基金supported by the Fundamental Research Funds for the Central Universities(WK9990000102,WK2030000035).
文摘The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.52373280,52177014,51977009,52273257).
文摘With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.
基金the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant No.GRANT5,208).
文摘Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices(MTCDs) regularly share extensive data without human intervention while making all types of decisions. Thesedecisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeatmonitoring, and several different alert systems. Many of these devices simultaneously share data to form anautomated system. The data shared between machine-type communication devices (MTCDs) is prone to risk dueto limited computational power, internal memory, and energy capacity. Therefore, securing the data and devicesbecomes challenging due to factors such as dynamic operational environments, remoteness, harsh conditions,and areas where human physical access is difficult. One of the crucial parts of securing MTCDs and data isauthentication, where each devicemust be verified before data transmission. SeveralM2Mauthentication schemeshave been proposed in the literature, however, the literature lacks a comprehensive overview of current M2Mauthentication techniques and the challenges associated with them. To utilize a suitable authentication schemefor specific scenarios, it is important to understand the challenges associated with it. Therefore, this article fillsthis gap by reviewing the state-of-the-art research on authentication schemes in MTCDs specifically concerningapplication categories, security provisions, and performance efficiency.
基金supported by the Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korean Government(MOTIE)(P0008703,The Competency Development Program for Industry Specialists)MSIT under the ICAN(ICT Challenge and Advanced Network of HRD)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning and Evaluation(IITP).
文摘With the advancement of wireless network technology,vast amounts of traffic have been generated,and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated.While signature-based detection methods,static analysis,and dynamic analysis techniques have been previously explored for malicious traffic detection,they have limitations in identifying diversified malware traffic patterns.Recent research has been focused on the application of machine learning to detect these patterns.However,applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process.In this study,we examined methods for effectively utilizing machine learning-based malicious traffic detection approaches for lightweight devices.We introduced the suboptimal feature selection model(SFSM),a feature selection technique designed to reduce complexity while maintaining the effectiveness of malicious traffic detection.Detection performance was evaluated on various malicious traffic,benign,exploits,and generic,using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for feature selection and narrowed the search scope to encompass all features.SFSM improved learning performance while minimizing complexity by considering feature selection and exhaustive search as two steps,a problem not considered in conventional models.Our experimental results showed that the detection accuracy was improved by approximately 20%compared to the random model,and the reduction in accuracy compared to the greedy model,which performs an exhaustive search on all features,was kept within 6%.Additionally,latency and complexity were reduced by approximately 96%and 99.78%,respectively,compared to the greedy model.This study demonstrates that malicious traffic can be effectively detected even in lightweight device environments.SFSM verified the possibility of detecting various attack traffic on lightweight devices.
基金supported by project TRANSACT funded under H2020-EU.2.1.1.-INDUSTRIAL LEADERSHIP-Leadership in Enabling and Industrial Technologies-Information and Communication Technologies(Grant Agreement ID:101007260).
文摘The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.