This paper proposes a mathod of subjective trade-off rate which describles decision-maker's preferince in multiobjective decision-making. Decision-maker can arbitrarity determine his subjective trade-off rate,but ...This paper proposes a mathod of subjective trade-off rate which describles decision-maker's preferince in multiobjective decision-making. Decision-maker can arbitrarity determine his subjective trade-off rate,but it is not sure to be effective.The paper finds aft effective upper bound of subjective trade-off rate,which is the KuhnThcker multiplier of some mathematical programming.For the anbjective trade-off rate not being larger than the upper bonnd,the solving method and properties of the optimal solution corresponding tile trade-off rate are discussed.The paper lastly develops the process of solving multiobjective decision-making with the subjective trade-off rate method.展开更多
The limitations of traditional approaches to selection problems are examined. A problemsolving strategy is presented in which decision-support and knowledge-based techniques play complementary roles. An approach to th...The limitations of traditional approaches to selection problems are examined. A problemsolving strategy is presented in which decision-support and knowledge-based techniques play complementary roles. An approach to the representation of knowledge to support the problem-solving strategy is presented which avoids commitment to a specific programming language or implementation environment. The problem of choosing a home is used to illustrate the representation of knowledge in a specific problem domain. Techniques for implementation of the problem-solving strategy are described. Knowledge elicitation techniques and their implementation in a development shell for application of the problem-solving strategy to any selection problem are also described.展开更多
为实现荔枝园环境的实时远程监控和精准管理,设计基于农业物联网的荔枝园信息获取与智能灌溉专家决策系统,该系统通过信息采集终端模块实时采集荔枝园的土壤含水率、空气温湿度、光照强度、风速和降雨量等环境信息,通过无线传感网将数...为实现荔枝园环境的实时远程监控和精准管理,设计基于农业物联网的荔枝园信息获取与智能灌溉专家决策系统,该系统通过信息采集终端模块实时采集荔枝园的土壤含水率、空气温湿度、光照强度、风速和降雨量等环境信息,通过无线传感网将数据包发送到网关上,网关通过通用无线分组网(general packet radio service,GPRS)将处理后的数据包传输到云服务器,专家系统根据采集到的环境数据,结合专家知识,建立多个决策数学模型,实现计算作物需水量、预报灌溉时间、灌溉最佳定量决策、根据灌溉制度决策等决策功能,将决策结果反馈到控制终端模块进行智能监控。经试验,对比系统多参数决策和一般的单参数决策得出的结论,多参数决策的准确性更高;灌溉区域的土壤含水率平均值为17.4%,满足荔枝树生长所需的土壤含水率条件,说明系统的灌溉决策具有比较强的实时性。且系统预测能达到75%的准确率,说明系统的预测实时性比较好。该系统实现了荔枝园的环境信息获取与智能灌溉,能指导用户更好地管理荔枝园。展开更多
文摘This paper proposes a mathod of subjective trade-off rate which describles decision-maker's preferince in multiobjective decision-making. Decision-maker can arbitrarity determine his subjective trade-off rate,but it is not sure to be effective.The paper finds aft effective upper bound of subjective trade-off rate,which is the KuhnThcker multiplier of some mathematical programming.For the anbjective trade-off rate not being larger than the upper bonnd,the solving method and properties of the optimal solution corresponding tile trade-off rate are discussed.The paper lastly develops the process of solving multiobjective decision-making with the subjective trade-off rate method.
文摘The limitations of traditional approaches to selection problems are examined. A problemsolving strategy is presented in which decision-support and knowledge-based techniques play complementary roles. An approach to the representation of knowledge to support the problem-solving strategy is presented which avoids commitment to a specific programming language or implementation environment. The problem of choosing a home is used to illustrate the representation of knowledge in a specific problem domain. Techniques for implementation of the problem-solving strategy are described. Knowledge elicitation techniques and their implementation in a development shell for application of the problem-solving strategy to any selection problem are also described.
文摘为实现荔枝园环境的实时远程监控和精准管理,设计基于农业物联网的荔枝园信息获取与智能灌溉专家决策系统,该系统通过信息采集终端模块实时采集荔枝园的土壤含水率、空气温湿度、光照强度、风速和降雨量等环境信息,通过无线传感网将数据包发送到网关上,网关通过通用无线分组网(general packet radio service,GPRS)将处理后的数据包传输到云服务器,专家系统根据采集到的环境数据,结合专家知识,建立多个决策数学模型,实现计算作物需水量、预报灌溉时间、灌溉最佳定量决策、根据灌溉制度决策等决策功能,将决策结果反馈到控制终端模块进行智能监控。经试验,对比系统多参数决策和一般的单参数决策得出的结论,多参数决策的准确性更高;灌溉区域的土壤含水率平均值为17.4%,满足荔枝树生长所需的土壤含水率条件,说明系统的灌溉决策具有比较强的实时性。且系统预测能达到75%的准确率,说明系统的预测实时性比较好。该系统实现了荔枝园的环境信息获取与智能灌溉,能指导用户更好地管理荔枝园。