The study was to investigate the adsorption behavior of arsenite (As(HI)) and arsenate (As(V)) on two variable charge soils, i.e., Haplic Acrisol and Rhodic Ferralsol at different ionic strengths and pH with b...The study was to investigate the adsorption behavior of arsenite (As(HI)) and arsenate (As(V)) on two variable charge soils, i.e., Haplic Acrisol and Rhodic Ferralsol at different ionic strengths and pH with batch methods. Results indicated that the amount of As(HI) adsorbed by these two soils increased with increasing solution pH, whereas it decreased with increasing ionic strength under the acidic condition. This suggested that As(Ⅲ) was mainly adsorbed on soil positive charge sites through electrostatic attraction under the acidic condition. Moreover, intersects of As(Ⅴ) adsorption-pH curves at different ionic strengths (a characteristic pH) are obtained for both soils. It was noted that above this pH, the adsorption of As(Ⅴ) was increased with increasing ionic strength, whereas below it the reverse trend was true. Precisely the intersect pH was 3.6 for Haplic Acrisol and 4.5 for Rhodic Ferralsol, which was near the values of PZSE (soil point of zero salt effect) of these soils. The effects of ionic strength and pH on arsenate adsorption by these soils were interpreted by the adsorption model. The results of zeta potential suggested that the potential in adsorption plane becomes less negative with increasing ionic strength above soil PZSE and decreases with increasing ionic strength below soil PZSE. These results further supported the hypothesis of the adsorption model that the potential in the adsorption plane changes with ionic strength with an opposite trend to surface charge of the soils. Therefore, the change of the potential in the adsorption plane was mainly responsible for the change of arsenate adsorption induced by ionic strength on variable charge soils.展开更多
Maize production in Kenya is constrained by weed infestation and nutrient deficiencies. Field studies were conducted during the 2008/2009 cropping seasons to investigate weeds in maize fields on three dominant soil ty...Maize production in Kenya is constrained by weed infestation and nutrient deficiencies. Field studies were conducted during the 2008/2009 cropping seasons to investigate weeds in maize fields on three dominant soil types in Western Kenya. Weeds were inventoried and their composition was compared using Jaccard's index. The economic importance of weed species (potential to reduce yields and the difficulty to control them by manual weeding) was assessed through participatory surveys. Finally, field trials assessed the effects of management options (farmer's practice, clean weeding, green manure, zero-tillage + cover crop and zero-tillage) on weed biomass and species composition. Across the three soil types, 55 weed species in 21 families were identified. Soil types influenced species composition as confirmed by Jaccard's similarity indices of 0.50, 0.58 and 0.62 for Nitisol vs. Acrisol, Ferralsol vs. Acrisol and Nitisol vs. Ferralsol, respectively. The economically important weeds were Commelina benghalensis, Cynodon nlemfuensis, Bidens pilosa, Galinsoga parviflora and Leonotis nepetifolia. Management options significantly (P 〈 0.05) reduced weed biomass, irrespective of soil type and seasons. Maize biomass response was highest (7-16 Mg ha1) in zero-tillage and zero-tillage + cover crop and lowest (2-8 Mg ha1) in farmer's practice. Significantly negative relationships (P 〈 0.01, r2 = 0.37 - 0.51) were established between leaf area index of maize and weed biomass across the soils. Zero-tillage combined with the use of a cover crop had the lowest weed biomass (〈 30% of the farmer practice) and thus appears to be a promising strategy combining soil fertility improvement with weed suppression in smallholder maize farming systems of Western Kenya.展开更多
Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid insecticides (Pys) have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. To...Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid insecticides (Pys) have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. To understand the potential influence of Cu on the fate of Pys in the soil environment, we selected two Pys, cypermethrin (CPM) and lambda-cyhalothrin (A-CHT), and two typical Chinese vineyard soils, Haplic Acrisol and Luvic Phaeozem, as experimental samples. The dissipation experiment was conducted at room temperature in the dark, and the transport of both Pys through the soils was investigated using soil thin-layer chromatography. The results showed that the transport of Pys in both soils increased as the Cu2+ concentration increased from 0 to 100 mg L-1, and Pys were more transportable in Haplic Acrisol (HA) than in Luvic Phaeozem (LP) under the same experimental conditions. For CPM, only 100 mg L-1 of Cu2+ significantly (P 〈 0.05) increased Pys transport through both soils relative to water. Lambda-CHT was significantly (P〈0.05) transported through HA by all the Cu2+ concentrations compared to water, and all but the 1 mg L-1 of Cu2+ significantly (P 〈 0.05) increased the transport of A-CHT through LP relative to water. However, the dissipation rates of CPM and λ-CHT decreased with the addition of Cu to soils. Our findings suggest that the risk of groundwater contamination by Pys increases in the soils with elevated Cu concentrations.展开更多
Soil nematodes are useful ecological indicators and can be extracted from soil by a variety of techniques.Because the extracted nematode samples(suspensions)can be quite turbid(i.e.,they contain soil particles and org...Soil nematodes are useful ecological indicators and can be extracted from soil by a variety of techniques.Because the extracted nematode samples(suspensions)can be quite turbid(i.e.,they contain soil particles and organic particles in addition to nematodes),quantitative and taxonomic analyses of the nematodes by microscopy can be difficult.In this study,the following three methods for cleaning turbid suspensions obtained from Baermann funnels were assessed:repeated centrifugation at 692.5´g for 1 min,repeated settling at low-temperature(4°C)for 24 h,and a combination of low-temperature settling and centrifugation.Nematodes were extracted with Baermann funnels from soil samples collected from four land-use types(since land-use type can affect the turbidity of nematode suspensions),and the resulting suspensions were cleaned by the three methods before nematode abundance was assessed.As a control,samples(i.e.,suspensions)were simply diluted with water,and nematodes were counted in the entire volume.The results showed that,within each land-use type,nematode abundance did not significantly differ between the control and the three cleaning methods.Averaged across all land-use types,however,the nematode recovery rate was slightly higher with repeated centrifugation than with the other two cleaning methods.Therefore,the proposed methods are sound for cleaning turbid nematode suspensions,and repeated centrifugation is the most efficient method.展开更多
基金supported by the Knowledge Innovation Program Foundation of the Chinese Academy of Sciences (No. KZCX2-YW-409)the National Natural Science Foundation of China (No. 20577054)
文摘The study was to investigate the adsorption behavior of arsenite (As(HI)) and arsenate (As(V)) on two variable charge soils, i.e., Haplic Acrisol and Rhodic Ferralsol at different ionic strengths and pH with batch methods. Results indicated that the amount of As(HI) adsorbed by these two soils increased with increasing solution pH, whereas it decreased with increasing ionic strength under the acidic condition. This suggested that As(Ⅲ) was mainly adsorbed on soil positive charge sites through electrostatic attraction under the acidic condition. Moreover, intersects of As(Ⅴ) adsorption-pH curves at different ionic strengths (a characteristic pH) are obtained for both soils. It was noted that above this pH, the adsorption of As(Ⅴ) was increased with increasing ionic strength, whereas below it the reverse trend was true. Precisely the intersect pH was 3.6 for Haplic Acrisol and 4.5 for Rhodic Ferralsol, which was near the values of PZSE (soil point of zero salt effect) of these soils. The effects of ionic strength and pH on arsenate adsorption by these soils were interpreted by the adsorption model. The results of zeta potential suggested that the potential in adsorption plane becomes less negative with increasing ionic strength above soil PZSE and decreases with increasing ionic strength below soil PZSE. These results further supported the hypothesis of the adsorption model that the potential in the adsorption plane changes with ionic strength with an opposite trend to surface charge of the soils. Therefore, the change of the potential in the adsorption plane was mainly responsible for the change of arsenate adsorption induced by ionic strength on variable charge soils.
文摘Maize production in Kenya is constrained by weed infestation and nutrient deficiencies. Field studies were conducted during the 2008/2009 cropping seasons to investigate weeds in maize fields on three dominant soil types in Western Kenya. Weeds were inventoried and their composition was compared using Jaccard's index. The economic importance of weed species (potential to reduce yields and the difficulty to control them by manual weeding) was assessed through participatory surveys. Finally, field trials assessed the effects of management options (farmer's practice, clean weeding, green manure, zero-tillage + cover crop and zero-tillage) on weed biomass and species composition. Across the three soil types, 55 weed species in 21 families were identified. Soil types influenced species composition as confirmed by Jaccard's similarity indices of 0.50, 0.58 and 0.62 for Nitisol vs. Acrisol, Ferralsol vs. Acrisol and Nitisol vs. Ferralsol, respectively. The economically important weeds were Commelina benghalensis, Cynodon nlemfuensis, Bidens pilosa, Galinsoga parviflora and Leonotis nepetifolia. Management options significantly (P 〈 0.05) reduced weed biomass, irrespective of soil type and seasons. Maize biomass response was highest (7-16 Mg ha1) in zero-tillage and zero-tillage + cover crop and lowest (2-8 Mg ha1) in farmer's practice. Significantly negative relationships (P 〈 0.01, r2 = 0.37 - 0.51) were established between leaf area index of maize and weed biomass across the soils. Zero-tillage combined with the use of a cover crop had the lowest weed biomass (〈 30% of the farmer practice) and thus appears to be a promising strategy combining soil fertility improvement with weed suppression in smallholder maize farming systems of Western Kenya.
基金Supported by the China Postdoctoral Science Foundation (No. 20090461068)the Jiangsu Provincial Planned Projects for Postdoctoral Research Funds, China (No. 1001021B)+1 种基金the Scientific Research Foundation for Talented Scholars of Jiangsu University, China(No. 10JDG039)the Open Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. Y052010043)
文摘Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid insecticides (Pys) have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. To understand the potential influence of Cu on the fate of Pys in the soil environment, we selected two Pys, cypermethrin (CPM) and lambda-cyhalothrin (A-CHT), and two typical Chinese vineyard soils, Haplic Acrisol and Luvic Phaeozem, as experimental samples. The dissipation experiment was conducted at room temperature in the dark, and the transport of both Pys through the soils was investigated using soil thin-layer chromatography. The results showed that the transport of Pys in both soils increased as the Cu2+ concentration increased from 0 to 100 mg L-1, and Pys were more transportable in Haplic Acrisol (HA) than in Luvic Phaeozem (LP) under the same experimental conditions. For CPM, only 100 mg L-1 of Cu2+ significantly (P 〈 0.05) increased Pys transport through both soils relative to water. Lambda-CHT was significantly (P〈0.05) transported through HA by all the Cu2+ concentrations compared to water, and all but the 1 mg L-1 of Cu2+ significantly (P 〈 0.05) increased the transport of A-CHT through LP relative to water. However, the dissipation rates of CPM and λ-CHT decreased with the addition of Cu to soils. Our findings suggest that the risk of groundwater contamination by Pys increases in the soils with elevated Cu concentrations.
基金This study was supported by the Natural Science Fund of China(41877055)Natural Science Foundation for Distinguished Young Scholars of Hunan Province given to Jie Zhao+2 种基金the Guangxi Natural Science Foundation Program(2018GXNSFAA281008)the Foundation for Young Scholars in Western China of CAS given to Jie Zhao(A class)the program of the Youth Innovation Promotion Association of Chinese Academy of Sciences(Y201969)。
文摘Soil nematodes are useful ecological indicators and can be extracted from soil by a variety of techniques.Because the extracted nematode samples(suspensions)can be quite turbid(i.e.,they contain soil particles and organic particles in addition to nematodes),quantitative and taxonomic analyses of the nematodes by microscopy can be difficult.In this study,the following three methods for cleaning turbid suspensions obtained from Baermann funnels were assessed:repeated centrifugation at 692.5´g for 1 min,repeated settling at low-temperature(4°C)for 24 h,and a combination of low-temperature settling and centrifugation.Nematodes were extracted with Baermann funnels from soil samples collected from four land-use types(since land-use type can affect the turbidity of nematode suspensions),and the resulting suspensions were cleaned by the three methods before nematode abundance was assessed.As a control,samples(i.e.,suspensions)were simply diluted with water,and nematodes were counted in the entire volume.The results showed that,within each land-use type,nematode abundance did not significantly differ between the control and the three cleaning methods.Averaged across all land-use types,however,the nematode recovery rate was slightly higher with repeated centrifugation than with the other two cleaning methods.Therefore,the proposed methods are sound for cleaning turbid nematode suspensions,and repeated centrifugation is the most efficient method.