Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of f...Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of ferrous sulfate, sodium nitrate, methanol and glucose on the degree of grafting was demonstrated. The function of the different additives was compared by the grafting of different monomers (AAc and AAm). The results show that the four of these additives are elective on the grafting of AAc. Only two of these additives, ferrous sulfate and methanol were effective on the grafting of AAm.展开更多
The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the...The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the reactivity ratios of monomers in copolymerization were obtained by Kelen-Tudos method. The results showed that the reactivity ratios rDE and rAM are 0.31 and 5.27 for DEDAAC with AM, rDE and rAA are 0.28 and 5.15 for DEDAAC with AA, and roe and rNsAA are 0.40 and 3.97 for DEDAAC with NaAA, respectively. The copolymerizations for DEDAAC with AM, AA or NaAA are non-ideal copolymerization and the products are random copolymers.展开更多
The graft polymerization of acrylic acid(A) and acrylamide(B) was carried out onto bi-oriented polyester BOPET corona film.The influence of monomer concentration,reducer concentration and reaction time on the graft po...The graft polymerization of acrylic acid(A) and acrylamide(B) was carried out onto bi-oriented polyester BOPET corona film.The influence of monomer concentration,reducer concentration and reaction time on the graft polymerization was investigated.The surface tension of the films increased with an increase of monomer concentration,till the concentration of monomer A reached 1.5×10^(-2)g/mL and the concentration of monomer B reached 4.0×10^(-2)g/mL.The surface tension of the films reached a maximum value at 7×10^(-4)M of reducer concentration and subsequently decreased with further increase in reducer concentration.The surface tension of the films increased with the increase of the reaction time apparently within 50min.The grafted corona BOPET films were characterized with IR and XPS.The presence of graft on the film surface was confirmed.The attenuation experiments on grafted corona BOPET films in air at 50℃ and in water were carried out to investigate the persistence of graft polymerization of acrylic acid and arylamide onto BOPET corona films.展开更多
In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) ...In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.展开更多
Solid polymer electrolytes (SPEs) of polyacrylamide-co-acrylic acid (PAA) as the polymer host and zinc acetate (ZnA) as an ionic dopant were prepared using a single solvent by the solution casting technique. The amorp...Solid polymer electrolytes (SPEs) of polyacrylamide-co-acrylic acid (PAA) as the polymer host and zinc acetate (ZnA) as an ionic dopant were prepared using a single solvent by the solution casting technique. The amorphous and crystalline structures of film were investigated by X-ray diffraction (XRD). The surface morphology of samples was examined by scanning electron microscopy (SEM). The composition and complex formation of films were characterized by Fourier transform infrared (FTIR) spectroscopy. The conductivity of the PAA-ZnA films was determined by electrochemical impedance spectroscopy. According to the XRD and FTIR analyses, all electrolyte films were in amorphous state and the existence of interaction between Zn2+ cations and the PAA structure confirms that the film was successfully prepared. The SEM observations reveal that the electrolyte films appeared to be rough and flat with irregularly shaped surfaces. The highest ionic conductivity (σ) of 1.82 × 10-5 Scm-1 was achieved at room temperature (303 K) for the sample containing 10 wt % ZnA.展开更多
Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects ...Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.展开更多
The terpolymer of itaconic acid, acrylamide and 2-acrylamido-2-methyl-1-propane sulfonic acid was synthesized through the free-radical polymerization. The IR spectra confirmed that there was no olefinic band, while th...The terpolymer of itaconic acid, acrylamide and 2-acrylamido-2-methyl-1-propane sulfonic acid was synthesized through the free-radical polymerization. The IR spectra confirmed that there was no olefinic band, while the TGA results revealed that the terpolymer was of high thermal stability.展开更多
This current study aims at determining the profile and contents of degradation compounds produced during the interaction between the frying oils and tuna fish involved in the cooking of “Garba”, a street food largel...This current study aims at determining the profile and contents of degradation compounds produced during the interaction between the frying oils and tuna fish involved in the cooking of “Garba”, a street food largely consumed in Côte d’Ivoire. For this purpose, the peroxide index and the neoformed compounds, especially trans fatty acids, acrylamid, polycyclic aromatic hydrocarbons were determined. This trial was carried out on 90 samples of frying oils and fried tuna fish collected from restaurant owners of “Garba” food in three locations in Abidjan. The samples were divided into three groups (G1, G2, and G3) according to the similarity of the practices adopted by the restorers. The results show that the peroxide values (14.95;15.01 and 11.97 meqO2/kg) of the oils respectively for G2, G3, and G1 are higher than the values fixed by the Codex Alimentarius. The trans fatty acid contents of the frying oils were 56.80%;61.01% and 55.18% respectively for G3, G2 and G1. The average acrylamide content of fried Tuna (69.43 μg/kg) is higher than the value recorded in the cooking oil (19.99 μg/kg). The average contents of the eleven HAPs determined in the oils are higher than those of the Tuna. The Benzo (a) pyrene contents of both matrices are lower than the EU standard 1881/2011 except for the G2 oil (2.66 μg/kg). Increased consumption of “Garba” may pose health risks to consumers as practices of frying Tuna generate compounds that are harmful to human health.展开更多
Functionalized polypropylene with acryl amide (AAm) and itaconic acid (IA) were prepared in the molten state in the presence of dicumyl peroxide. The effects of the concentration of both mono- mers on the degree of fu...Functionalized polypropylene with acryl amide (AAm) and itaconic acid (IA) were prepared in the molten state in the presence of dicumyl peroxide. The effects of the concentration of both mono- mers on the degree of functionalization and properties of the products were investigated by FT-IR, contact angle measurement and DSC analysis. It was found that the degree of functionalization depends on the initial concentration of both monomers that used in the reaction. The influence of the AAm and IA content on the melting and crystallization temperature of PP was investigated by DSC. The contact angle of water on film surfaces of the functionalized PP (PP-g-AAm and PP-g-IA) decreased with increasing modified polymer content. From FT-IR spectra of functionalized PP a calculation was made of carbonyl index on the films surfaces. It was found that the higher intensity of the carbonyl index, the lower contact angle value and the lower crystallinity confirmed the ex- istence of functionalized AAm and/or IA in PP. It was concluded from the different characteriza- tion methods that the polarity and percentage of functionalized PP were increased up to 3 phr for both monomers, and then it was decreased by increasing the amount of monomers and had a threshold value, due to nucleating agents of monomers in PP.展开更多
In this paper,the poly(acrylamide)hydrogel used to immobilize saccharomyces cerevisiae for asymmetric synthesis of R(-)-mandelic acid was prepared with free radical ploymerization in deionized water at room temperatur...In this paper,the poly(acrylamide)hydrogel used to immobilize saccharomyces cerevisiae for asymmetric synthesis of R(-)-mandelic acid was prepared with free radical ploymerization in deionized water at room temperature under nitrogen atmosphere.The influence of the composition of hydrogel,loading amount of cells and culture conditions on the asymmetric synthesis was investigated.Results show that PAAm hydrogel is a feasible carrier for immobilization of cells which is a potential alternative method to prepare enantiomerically pure R(-)-mandelic acid.展开更多
Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA)....Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).展开更多
The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic...The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.展开更多
The shortage of petroleum has resulted in worldwide efforts to produce chemicals from renewable resources. Among these attempts, the possibility of producing acrylic acid from biomass has caught the eye of many resear...The shortage of petroleum has resulted in worldwide efforts to produce chemicals from renewable resources. Among these attempts, the possibility of producing acrylic acid from biomass has caught the eye of many researchers. Converting the carbohydrates first to lactic acid by fermentation and then dehydrating lactic acid to acrylic acid is hitherto the most effective way for producing acrylic acid from biomass. While the lactic acid fer- mentation has been commercialized since longer times, the dehydration process of lactic acid is still under development because of its low yield. Further efforts should be made before this process became economically feasible. Because of the existence of acrylic acid pathways in some microorganisms, strain improvement and metabolic engineering provides also a possibilitv to produce acrylic acid directly from biomass by fermentation.展开更多
Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic a...Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR, -COOH,-CONHR, and -COO-NH3^+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0^# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0^# diesel by 6-7 ℃.展开更多
The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic aci...The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.展开更多
Water samples were collected over P. ponchetii bloom period beginning in November 1988, in 15m water column, from 10km offshore of Davis Station, Vestfold Hill, Antarctica. The concentrations of acrylic acid and dimet...Water samples were collected over P. ponchetii bloom period beginning in November 1988, in 15m water column, from 10km offshore of Davis Station, Vestfold Hill, Antarctica. The concentrations of acrylic acid and dimethyl sulphide (DMS), which are toxic compounds in the water samples, were determined by HPLC and GC. The result shows that the concentration of acrylic acid varies in 0. 001 - 0. 510μmol ?L-1 and the concentration of DMS in 0. 003-0. 588 μmol ?L-1 during P. pouchetii bloom. Both the increased since late December 1988 and reached the highest concentration in early January 1989, then they decreased rapidly and returned to lower level from middle January to February in agreement with variation in cell number of the unicell alga P. pouchetii. The correlation coefficients between acrylic acid and P. pouchetii and between DMS and P. pouchetii are all 0. 998. It is undoubted that P. pouchetii produced acrylic acid and DMS. The highest productivity of acrylic acid and DMS were 9. 76X 10-8 umol cell-1 and 13. 09 ×10-8 μmol ?cell-1, respectively, during P. pouchelii bloom. A cellular product, dimethylsulphonium propionate (DMSP), is decomposed into acrylic acid and DMS, and the formation of DMSP is probably from methionine which could be utilized by P. pouchelii.展开更多
Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different c...Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%.展开更多
文摘Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of ferrous sulfate, sodium nitrate, methanol and glucose on the degree of grafting was demonstrated. The function of the different additives was compared by the grafting of different monomers (AAc and AAm). The results show that the four of these additives are elective on the grafting of AAc. Only two of these additives, ferrous sulfate and methanol were effective on the grafting of AAm.
文摘The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the reactivity ratios of monomers in copolymerization were obtained by Kelen-Tudos method. The results showed that the reactivity ratios rDE and rAM are 0.31 and 5.27 for DEDAAC with AM, rDE and rAA are 0.28 and 5.15 for DEDAAC with AA, and roe and rNsAA are 0.40 and 3.97 for DEDAAC with NaAA, respectively. The copolymerizations for DEDAAC with AM, AA or NaAA are non-ideal copolymerization and the products are random copolymers.
文摘The graft polymerization of acrylic acid(A) and acrylamide(B) was carried out onto bi-oriented polyester BOPET corona film.The influence of monomer concentration,reducer concentration and reaction time on the graft polymerization was investigated.The surface tension of the films increased with an increase of monomer concentration,till the concentration of monomer A reached 1.5×10^(-2)g/mL and the concentration of monomer B reached 4.0×10^(-2)g/mL.The surface tension of the films reached a maximum value at 7×10^(-4)M of reducer concentration and subsequently decreased with further increase in reducer concentration.The surface tension of the films increased with the increase of the reaction time apparently within 50min.The grafted corona BOPET films were characterized with IR and XPS.The presence of graft on the film surface was confirmed.The attenuation experiments on grafted corona BOPET films in air at 50℃ and in water were carried out to investigate the persistence of graft polymerization of acrylic acid and arylamide onto BOPET corona films.
基金supported by National Natural Science Foundation of China(No.21367023)Natural Science Foundation of Gansu Province,China(No.1208RJZA161)Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University of China(Nos.NWNU-LKQN-10-16 and NWNU-LKQN-12-9)
文摘In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.
文摘Solid polymer electrolytes (SPEs) of polyacrylamide-co-acrylic acid (PAA) as the polymer host and zinc acetate (ZnA) as an ionic dopant were prepared using a single solvent by the solution casting technique. The amorphous and crystalline structures of film were investigated by X-ray diffraction (XRD). The surface morphology of samples was examined by scanning electron microscopy (SEM). The composition and complex formation of films were characterized by Fourier transform infrared (FTIR) spectroscopy. The conductivity of the PAA-ZnA films was determined by electrochemical impedance spectroscopy. According to the XRD and FTIR analyses, all electrolyte films were in amorphous state and the existence of interaction between Zn2+ cations and the PAA structure confirms that the film was successfully prepared. The SEM observations reveal that the electrolyte films appeared to be rough and flat with irregularly shaped surfaces. The highest ionic conductivity (σ) of 1.82 × 10-5 Scm-1 was achieved at room temperature (303 K) for the sample containing 10 wt % ZnA.
文摘Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.
文摘The terpolymer of itaconic acid, acrylamide and 2-acrylamido-2-methyl-1-propane sulfonic acid was synthesized through the free-radical polymerization. The IR spectra confirmed that there was no olefinic band, while the TGA results revealed that the terpolymer was of high thermal stability.
文摘This current study aims at determining the profile and contents of degradation compounds produced during the interaction between the frying oils and tuna fish involved in the cooking of “Garba”, a street food largely consumed in Côte d’Ivoire. For this purpose, the peroxide index and the neoformed compounds, especially trans fatty acids, acrylamid, polycyclic aromatic hydrocarbons were determined. This trial was carried out on 90 samples of frying oils and fried tuna fish collected from restaurant owners of “Garba” food in three locations in Abidjan. The samples were divided into three groups (G1, G2, and G3) according to the similarity of the practices adopted by the restorers. The results show that the peroxide values (14.95;15.01 and 11.97 meqO2/kg) of the oils respectively for G2, G3, and G1 are higher than the values fixed by the Codex Alimentarius. The trans fatty acid contents of the frying oils were 56.80%;61.01% and 55.18% respectively for G3, G2 and G1. The average acrylamide content of fried Tuna (69.43 μg/kg) is higher than the value recorded in the cooking oil (19.99 μg/kg). The average contents of the eleven HAPs determined in the oils are higher than those of the Tuna. The Benzo (a) pyrene contents of both matrices are lower than the EU standard 1881/2011 except for the G2 oil (2.66 μg/kg). Increased consumption of “Garba” may pose health risks to consumers as practices of frying Tuna generate compounds that are harmful to human health.
文摘Functionalized polypropylene with acryl amide (AAm) and itaconic acid (IA) were prepared in the molten state in the presence of dicumyl peroxide. The effects of the concentration of both mono- mers on the degree of functionalization and properties of the products were investigated by FT-IR, contact angle measurement and DSC analysis. It was found that the degree of functionalization depends on the initial concentration of both monomers that used in the reaction. The influence of the AAm and IA content on the melting and crystallization temperature of PP was investigated by DSC. The contact angle of water on film surfaces of the functionalized PP (PP-g-AAm and PP-g-IA) decreased with increasing modified polymer content. From FT-IR spectra of functionalized PP a calculation was made of carbonyl index on the films surfaces. It was found that the higher intensity of the carbonyl index, the lower contact angle value and the lower crystallinity confirmed the ex- istence of functionalized AAm and/or IA in PP. It was concluded from the different characteriza- tion methods that the polarity and percentage of functionalized PP were increased up to 3 phr for both monomers, and then it was decreased by increasing the amount of monomers and had a threshold value, due to nucleating agents of monomers in PP.
文摘In this paper,the poly(acrylamide)hydrogel used to immobilize saccharomyces cerevisiae for asymmetric synthesis of R(-)-mandelic acid was prepared with free radical ploymerization in deionized water at room temperature under nitrogen atmosphere.The influence of the composition of hydrogel,loading amount of cells and culture conditions on the asymmetric synthesis was investigated.Results show that PAAm hydrogel is a feasible carrier for immobilization of cells which is a potential alternative method to prepare enantiomerically pure R(-)-mandelic acid.
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
文摘Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
文摘The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.
文摘The shortage of petroleum has resulted in worldwide efforts to produce chemicals from renewable resources. Among these attempts, the possibility of producing acrylic acid from biomass has caught the eye of many researchers. Converting the carbohydrates first to lactic acid by fermentation and then dehydrating lactic acid to acrylic acid is hitherto the most effective way for producing acrylic acid from biomass. While the lactic acid fer- mentation has been commercialized since longer times, the dehydration process of lactic acid is still under development because of its low yield. Further efforts should be made before this process became economically feasible. Because of the existence of acrylic acid pathways in some microorganisms, strain improvement and metabolic engineering provides also a possibilitv to produce acrylic acid directly from biomass by fermentation.
文摘Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR, -COOH,-CONHR, and -COO-NH3^+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0^# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0^# diesel by 6-7 ℃.
文摘The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.
文摘Water samples were collected over P. ponchetii bloom period beginning in November 1988, in 15m water column, from 10km offshore of Davis Station, Vestfold Hill, Antarctica. The concentrations of acrylic acid and dimethyl sulphide (DMS), which are toxic compounds in the water samples, were determined by HPLC and GC. The result shows that the concentration of acrylic acid varies in 0. 001 - 0. 510μmol ?L-1 and the concentration of DMS in 0. 003-0. 588 μmol ?L-1 during P. pouchetii bloom. Both the increased since late December 1988 and reached the highest concentration in early January 1989, then they decreased rapidly and returned to lower level from middle January to February in agreement with variation in cell number of the unicell alga P. pouchetii. The correlation coefficients between acrylic acid and P. pouchetii and between DMS and P. pouchetii are all 0. 998. It is undoubted that P. pouchetii produced acrylic acid and DMS. The highest productivity of acrylic acid and DMS were 9. 76X 10-8 umol cell-1 and 13. 09 ×10-8 μmol ?cell-1, respectively, during P. pouchelii bloom. A cellular product, dimethylsulphonium propionate (DMSP), is decomposed into acrylic acid and DMS, and the formation of DMSP is probably from methionine which could be utilized by P. pouchelii.
文摘Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%.