Interpenetrating polymer networks (IPNs) based on fluoroelastomer/butadiene-acrylonitrile rubber (FKM/NBR) by molten blending at a high temperature and chemical cross-linking of two components were prepared. The i...Interpenetrating polymer networks (IPNs) based on fluoroelastomer/butadiene-acrylonitrile rubber (FKM/NBR) by molten blending at a high temperature and chemical cross-linking of two components were prepared. The influence of the two networks component on the mechanical properties and thermostabilities was studied. The experimental results show that the mechanical properties of the IPNs are superior to those of the individual FKM and NBR networks due to forming the case of interpenetrating and intercross-linking between the two networks, the mechanical properties and thermal resistance exhibit higher values when 80/20 (w/w) FKM and NBR is blended and respectively cured simultaneously. The co-continuous morphology of the IPNs in the blends of 80/20 (w/w) FKM/NBR is found by transmission electron microscopy (TEM), the differential scanning calorimetry (DSC) determination shows that the blends of 80/20 (w/w) FKM/NBR have better compatibility, and the glass transition temperature of the elastomer is -21.5 ℃.展开更多
An approach for analyzing and optimizing sealing mechanism of ball valve made of nitrile butadiene rubber(NBR) with finite element method was presented. The Mooney-Rivlin hyperelastic material model was chosen to char...An approach for analyzing and optimizing sealing mechanism of ball valve made of nitrile butadiene rubber(NBR) with finite element method was presented. The Mooney-Rivlin hyperelastic material model was chosen to characterize NBR sealing, as it has been recommended in the similar applications. That is, NBR sealing was modeled as incompressible hyperelasticity, as well as the assumption of isotropic flow. The results illustrate the structural pressure and contact pressure on the contact surface, which shows that the NBR sealing mechanism is very suitable for sealing after dimension optimization.展开更多
The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to re...The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to reveal the mechanism of the influence of rubber hardness on the static and dynamic behavior of seals.The optimized selections of rubber hardness are then investigated under different conditions.Results show that the low hardness seal is prone to stress concentration due to the extrusion effect under high pressure conditions;it is also more prone to leaking.A high hardness seal can better prevent leakage by reducing film thickness but it will cause large frictional power loss and increase the probability of wear failure.The choice of low hardness is recommended to reduce friction with the premise that leakage requirements are met.展开更多
The residual levels and migration behavior of volatile substances were detected using HS-GC/MS for acrylonitrile-butadiene-styrene copolymer (ABS) toys, thermoplastic elastomer toys, and rubber toys made from 1,3-buta...The residual levels and migration behavior of volatile substances were detected using HS-GC/MS for acrylonitrile-butadiene-styrene copolymer (ABS) toys, thermoplastic elastomer toys, and rubber toys made from 1,3-butadiene and styrene found on the Japanese market. The maximum residual level of these volatile substances was 2600 μg/g of styrene in ABS toys. In particular, the levels of known carcinogens 1,3-butadiene, benzene, and acrylonitrile are 5.3, 2.5 and 55 μg/g, which are much lower than the EU limit of 0.1%. Furthermore, some volatile substances migrated from ABS toys into water in amounts of 3 -40 ng/mL. Thermoplastic elastomer toys and rubber toys contained these volatile substances at significantly lower levels than ABS toys.展开更多
Thermal decomposition processes and mechanism of low-temperature grade hydrogenated acrylonitrilebutadiene rubber(LTG-HNBR) composites with sodium methacrylate(NaMAA) were investigated by thermogravime-tric analy...Thermal decomposition processes and mechanism of low-temperature grade hydrogenated acrylonitrilebutadiene rubber(LTG-HNBR) composites with sodium methacrylate(NaMAA) were investigated by thermogravime-tric analysis(TGA) and Fourier transform infrared spectroscopy(FTIR) coupling technology in this article. The resultsof TGA demonstrate that the addition of NaMAA can enhance the thermal decomposition temperature of the rubber.Moreover, it was found that the composites spent more activation energies to decompose than pure rubber by thecalculations of multiply heating rate method. Time-resolved FTIR spectra show that NaMAA affects the initial de-composition of the composites. But in the following process, the composites maintained a similar behavior to the ma-trix. During the decomposition, PNaMAA nanostructures, in-situ generated by NaMAA, helped reduce the diffusionspeed of decomposition products and thus improved the thermal stability of the composites.展开更多
文摘Interpenetrating polymer networks (IPNs) based on fluoroelastomer/butadiene-acrylonitrile rubber (FKM/NBR) by molten blending at a high temperature and chemical cross-linking of two components were prepared. The influence of the two networks component on the mechanical properties and thermostabilities was studied. The experimental results show that the mechanical properties of the IPNs are superior to those of the individual FKM and NBR networks due to forming the case of interpenetrating and intercross-linking between the two networks, the mechanical properties and thermal resistance exhibit higher values when 80/20 (w/w) FKM and NBR is blended and respectively cured simultaneously. The co-continuous morphology of the IPNs in the blends of 80/20 (w/w) FKM/NBR is found by transmission electron microscopy (TEM), the differential scanning calorimetry (DSC) determination shows that the blends of 80/20 (w/w) FKM/NBR have better compatibility, and the glass transition temperature of the elastomer is -21.5 ℃.
基金supported by Technical Center for High-Performance Valves from the Regional Innovation Center (RIC) Program of the Ministry of Knowledge Economy (MKE),Korea
文摘An approach for analyzing and optimizing sealing mechanism of ball valve made of nitrile butadiene rubber(NBR) with finite element method was presented. The Mooney-Rivlin hyperelastic material model was chosen to characterize NBR sealing, as it has been recommended in the similar applications. That is, NBR sealing was modeled as incompressible hyperelasticity, as well as the assumption of isotropic flow. The results illustrate the structural pressure and contact pressure on the contact surface, which shows that the NBR sealing mechanism is very suitable for sealing after dimension optimization.
基金supported by the National Natural Science Foundation of China(No.52005470)the Natural Science Foundation of Zhejiang Province(No.LQ21E050020)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.2021YW17),China.
文摘The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to reveal the mechanism of the influence of rubber hardness on the static and dynamic behavior of seals.The optimized selections of rubber hardness are then investigated under different conditions.Results show that the low hardness seal is prone to stress concentration due to the extrusion effect under high pressure conditions;it is also more prone to leaking.A high hardness seal can better prevent leakage by reducing film thickness but it will cause large frictional power loss and increase the probability of wear failure.The choice of low hardness is recommended to reduce friction with the premise that leakage requirements are met.
文摘The residual levels and migration behavior of volatile substances were detected using HS-GC/MS for acrylonitrile-butadiene-styrene copolymer (ABS) toys, thermoplastic elastomer toys, and rubber toys made from 1,3-butadiene and styrene found on the Japanese market. The maximum residual level of these volatile substances was 2600 μg/g of styrene in ABS toys. In particular, the levels of known carcinogens 1,3-butadiene, benzene, and acrylonitrile are 5.3, 2.5 and 55 μg/g, which are much lower than the EU limit of 0.1%. Furthermore, some volatile substances migrated from ABS toys into water in amounts of 3 -40 ng/mL. Thermoplastic elastomer toys and rubber toys contained these volatile substances at significantly lower levels than ABS toys.
文摘Thermal decomposition processes and mechanism of low-temperature grade hydrogenated acrylonitrilebutadiene rubber(LTG-HNBR) composites with sodium methacrylate(NaMAA) were investigated by thermogravime-tric analysis(TGA) and Fourier transform infrared spectroscopy(FTIR) coupling technology in this article. The resultsof TGA demonstrate that the addition of NaMAA can enhance the thermal decomposition temperature of the rubber.Moreover, it was found that the composites spent more activation energies to decompose than pure rubber by thecalculations of multiply heating rate method. Time-resolved FTIR spectra show that NaMAA affects the initial de-composition of the composites. But in the following process, the composites maintained a similar behavior to the ma-trix. During the decomposition, PNaMAA nanostructures, in-situ generated by NaMAA, helped reduce the diffusionspeed of decomposition products and thus improved the thermal stability of the composites.