The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a...The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.展开更多
The adsorption capacity of activated carbon modified with KMnO4 (potassium permanganate) for Cr(VI) from aqueous solution was investigated. The modified activated carbon was characterized by SEM (scanning electro...The adsorption capacity of activated carbon modified with KMnO4 (potassium permanganate) for Cr(VI) from aqueous solution was investigated. The modified activated carbon was characterized by SEM (scanning electron microscopy), FT-IR (Fourier transform infrared spectrometer), and N2 adsorption/desorption tests. Adsorption of Cr(VI) from aqueous solution onto the activated carbon was investigated in a batch system. In the present study, the effect of various parameters such as pH, contact time and initial concentration on the adsorption capacity were determined by ICP-AES (inductively coupled plasma atomic emission spectrometry). The Cr(VI) adsorption on the activated carbon conforms to the Langmuir and Freundlich isothermal adsorption equation. The rates of adsorption were found to conform to pseudo-second order kinetic. The modified activated carbon can be an effective adsorbent for Cr(VI) from the aqueous solution.展开更多
As a strong reducing radical,carbon dioxide anion radical(CO·-2)can be generated by initiating sulfate radical(SO·-4)in the presence of tonnate anions(FA)for Cr(Ⅵ)reduction.Moreover,activated carbon(AC)-cat...As a strong reducing radical,carbon dioxide anion radical(CO·-2)can be generated by initiating sulfate radical(SO·-4)in the presence of tonnate anions(FA)for Cr(Ⅵ)reduction.Moreover,activated carbon(AC)-catalyzed persultate(PS)oxidation is an economically justifiable,enⅥronmentally friendly,and easy-to-scalemethod to produce SO·-4 The complete removal of Cr(Ⅵ)was achieved within 280 min for an initial Cr(Ⅵ)concentration of 50 mg/L under the optional condition of c(AC)=1 g/L,[PS]0=1O mmol/L,[FA]0=10 mmol/L,T=30℃,and unadjusted pH.When the molar ratio of FA to PS was greater than or equal to 1,the system maintained a strong reduction state.The mechanism investigation confirmed that FA was converted to carboxyl anion radical(CO2·-2)as the predominant radical tor Cr(Ⅵ)reduction.This novel system may offer a potential plattbnn teclmology tor Cr(Ⅵ)wastewater treatment.展开更多
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current in...The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto HaPO4-acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of poten- tial adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol.L-1), flow rate (1.0-3.1 cm3-min-1), ionic strength (0.01-0.30 mmol-L-1) and adsorbent mass (0.11 0.465 g) on Cr(VI) adsorption were studied by assessing the microcolmnn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process.展开更多
The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination...The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.展开更多
利用ZnCl_2活化法制备的柚皮基活性炭(GAC)处理含Cr(Ⅵ)废水,研究了pH、投加量、吸附时间、初始浓度和温度对Cr(Ⅵ)吸附的影响。吸附等温实验数据拟合显示,与Freundlich相比,吸附等温线更符合Langmuir和Dubinin-Radushkevich(D-R)方程...利用ZnCl_2活化法制备的柚皮基活性炭(GAC)处理含Cr(Ⅵ)废水,研究了pH、投加量、吸附时间、初始浓度和温度对Cr(Ⅵ)吸附的影响。吸附等温实验数据拟合显示,与Freundlich相比,吸附等温线更符合Langmuir和Dubinin-Radushkevich(D-R)方程。25、35和45℃时,GAC的单分子层吸附量分别为119.54、132.80、和145.47 mg/g,吸附自由能分别为9.93、17.72和20.82 k J/mol。吸附动力学研究显示:准二级动力学、颗粒内扩散和Bangham模型可以描述GAC吸附Cr(Ⅵ)的反应过程,吸附以化学吸附为主,过程受膜扩散和颗粒内扩散共同控制。展开更多
文摘The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.
文摘The adsorption capacity of activated carbon modified with KMnO4 (potassium permanganate) for Cr(VI) from aqueous solution was investigated. The modified activated carbon was characterized by SEM (scanning electron microscopy), FT-IR (Fourier transform infrared spectrometer), and N2 adsorption/desorption tests. Adsorption of Cr(VI) from aqueous solution onto the activated carbon was investigated in a batch system. In the present study, the effect of various parameters such as pH, contact time and initial concentration on the adsorption capacity were determined by ICP-AES (inductively coupled plasma atomic emission spectrometry). The Cr(VI) adsorption on the activated carbon conforms to the Langmuir and Freundlich isothermal adsorption equation. The rates of adsorption were found to conform to pseudo-second order kinetic. The modified activated carbon can be an effective adsorbent for Cr(VI) from the aqueous solution.
基金Supported by the National Nature Science Foundation of China(No.41302184)the Project of the Research on Water Environmental Protection Strategy and Management Policy in Beijing-Tianjin-Hebei Region,China(No.2018ZX07111001)+2 种基金the Scientific Frontier and Interdisciplinary Research Project of Jilin Universitythe Outstanding Youth Cultivation Plan of Jilin University,the Fund of the Key Laboratory of Groundwater Resources and Environmental of Ministry of Education(Jilin University) Chinathe Project of the National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Teclmology of China.
文摘As a strong reducing radical,carbon dioxide anion radical(CO·-2)can be generated by initiating sulfate radical(SO·-4)in the presence of tonnate anions(FA)for Cr(Ⅵ)reduction.Moreover,activated carbon(AC)-catalyzed persultate(PS)oxidation is an economically justifiable,enⅥronmentally friendly,and easy-to-scalemethod to produce SO·-4 The complete removal of Cr(Ⅵ)was achieved within 280 min for an initial Cr(Ⅵ)concentration of 50 mg/L under the optional condition of c(AC)=1 g/L,[PS]0=1O mmol/L,[FA]0=10 mmol/L,T=30℃,and unadjusted pH.When the molar ratio of FA to PS was greater than or equal to 1,the system maintained a strong reduction state.The mechanism investigation confirmed that FA was converted to carboxyl anion radical(CO2·-2)as the predominant radical tor Cr(Ⅵ)reduction.This novel system may offer a potential plattbnn teclmology tor Cr(Ⅵ)wastewater treatment.
文摘The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto HaPO4-acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of poten- tial adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol.L-1), flow rate (1.0-3.1 cm3-min-1), ionic strength (0.01-0.30 mmol-L-1) and adsorbent mass (0.11 0.465 g) on Cr(VI) adsorption were studied by assessing the microcolmnn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process.
基金Project(K0802144-31) supported by the Program of Science and Technology of Changsha, ChinaProjects(2006AA06Z374, 2007AA021304) supported by the National Hi-tech Research and Development Program of China
文摘The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.
文摘利用ZnCl_2活化法制备的柚皮基活性炭(GAC)处理含Cr(Ⅵ)废水,研究了pH、投加量、吸附时间、初始浓度和温度对Cr(Ⅵ)吸附的影响。吸附等温实验数据拟合显示,与Freundlich相比,吸附等温线更符合Langmuir和Dubinin-Radushkevich(D-R)方程。25、35和45℃时,GAC的单分子层吸附量分别为119.54、132.80、和145.47 mg/g,吸附自由能分别为9.93、17.72和20.82 k J/mol。吸附动力学研究显示:准二级动力学、颗粒内扩散和Bangham模型可以描述GAC吸附Cr(Ⅵ)的反应过程,吸附以化学吸附为主,过程受膜扩散和颗粒内扩散共同控制。