期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mechanism of lead immobilization by oxalic acid-activated phosphate rocks 被引量:13
1
作者 Guanjie Jiang Yonghong Liu +3 位作者 Li Huang Qingling Fu Youjun Deng Hongqing Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期919-925,共7页
Lead (Pb) chemical fixation is an important environmental aspect for human health. Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution. Raw PRs and oxalic acid-activated PRs (A... Lead (Pb) chemical fixation is an important environmental aspect for human health. Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution. Raw PRs and oxalic acid-activated PRs (APRs) were used to investigate the effect of chemical modification on the Pb-binding capacity in the pH range 2.0-5.0. The Pb adsorption rate of all treatments above pH 3.0 reached 90%. The Pb binding on PRs and APRs was pH-independent, except at pH 2.0 in activated treatments. The X-ray diffraction analysis confirmed that the raw PRs formed cerussite after reacting with the Pb solution, whereas the APRs formed pyromorphite. The Fourier Transform Infrared spectroscopy analysis indicated that carbonate (CO32-) in raw PRs and phosphate (PO43-) groups in APRs played an important role in the Pb-binding process. After adsorption, anomalous block-shaped particles were observed by scanning electron microscopy with energy dispersive spectroscopy. The X-ray photoelectron spectroscopy data further indicated that both chemical and physical reactions occurred during the adsorption process according to the binding energy. Because of lower solubility of pyromorphite compared to cerussite, the APRs are more effective in immobilizing Pb than that of PRs. 展开更多
关键词 PB activated phosphate rocks oxalic acid IMMOBILIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部