Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be expl...Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients.展开更多
目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响...目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响。方法选取36只雌性SD大鼠随机分成空白组、模型组、阳性对照组和通痹颗粒低、中、高剂量组,每组6只。空白组不予处理,其余组用牛Ⅱ型胶原建立CIA模型。造模完成后,空白组、模型组予生理盐水灌胃,其余各组分别以巴瑞替尼片和低、中、高剂量通痹颗粒灌胃。每天1次,连续4周。HE染色行滑膜组织病理学观察;酶联免疫吸附法测定血清Hepc、白细胞介素6(interleukin 6,IL-6)水平;逆转录-聚合酶链反应法测定滑膜中JAK2、STAT3、细胞信号因子传导抑制体(suppressor of cytokine signaling,SOCS)1、SOCS3的mRNA相对表达量;Western blot法检测滑膜中JAK2、p-JAK2、STAT3、p-STAT3、SOCS1、SOCS3的蛋白表达量。结果模型组见滑膜上皮结构缺损,滑膜重度增生,排列紊乱,并有大量炎症细胞浸润和多个血管翳形成;各给药组滑膜炎症均有所减轻,阳性对照组优于通痹颗粒高剂量组,通痹颗粒中、高剂量组优于低剂量组。与模型组相比,各给药组关节炎指数评分、血清Hepc和IL-6水平均显著降低(P<0.01);与阳性对照组相比,通痹颗粒中、低剂量组关节炎指数评分、血清Hepc和IL-6水平均升高(P<0.05)。与模型组比较,阳性对照组和通痹颗粒低、中、高剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均降低(P<0.05),而通路抑制因子SOCS1、SOCS3 mRNA和蛋白的表达均升高(P<0.05);与阳性对照组比较,通痹颗粒各剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均升高(P<0.05),而SOCS1、SOCS3 mRNA和蛋白的表达均降低(P<0.05)。结论通痹颗粒能够改善CIA大鼠滑膜炎症,其机制可能与抑制JAK2/STAT3信号通路而减少Hepc的表达有关。展开更多
BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate de...BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.展开更多
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCP...Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.展开更多
Background&Objective Knee osteoarthritis(OA)is a degenerative disease,which not only induces superficial cartilage defects and full-thickness cartilage defects,but also exacerbates the microenvironment of the knee...Background&Objective Knee osteoarthritis(OA)is a degenerative disease,which not only induces superficial cartilage defects and full-thickness cartilage defects,but also exacerbates the microenvironment of the knee joint and affects the mechano-chemical responses of the organ.As a growth/repair factor,mechanical growth factor(MGF)has the function of preventing OA,promoting cartilage regeneration and repairing damaged ligaments.activating transcription factor 2(ATF-2),a transcription factor,has the property of binding to cytokines,which makes it involved in the transcriptional regulation of various pathways in response to cellular stress,inflammatory cytokine and growth factors.At present,little is known about the effect of MGF on human osteoarthritis ligament fibroblasts(OA-LFs),and whether the approach can promote OA-LFs timely response to the mechanical injury and initiate signaling pathway for cell survival.Therefore,the purpose of this study is to investigate whether MGF promotes mechanical response to ligament fibroblasts in osteoarthritis knee cavity via ATF-2.Methods OA-LFs were seeded onto six-cell BioFlex plates and suffered from 12%static mechanical stretch[60 cycles/minute(1 Hz)]for 12 hours to mimic mechanical force mediated ligament injury.Meanwhile,OA-LFs were treated with MGF before and during mechanical stretch.Intracellular reactive oxygen species(ROS)and GRP78 mRNA expression were investigated to detect the cellular stress response of OA-LFs.The scratch test was performed to detect the migration ability of cells,gelatin zymography was used to examine the effect of MGF on the activity of matrix metalloproteinase 2(MMP-2)in OA-LFs,and cell deformation was detected by phalloidin-FITC staining after stretching.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to screen the messenger RNA(mRNA)expression of ATF family members after OALFs treatment with MGF.Western blotting further proved that MGF is capable to activate the p-ATF-2.Results OA delays LFs response to mechanical injury,while MGF pretreatment can promote cells timely feedback the mechanically stimuli by inducing cellular stress.MGF treatment can alleviate the decline in cell migration ability caused by mechanical injury and further promote cell migration.In addition,MGF can reduce the activity of MM P-5 and alleviate the stretch-induced deformation of OA-LFs.Furthermore,the mRNA expression of ATF-2 up-regulated in a dose-dependent manner upon MGF treatment compared with control,while the expression of ATF-5 gene was down-regulated in a dose-dependent.Protein levels showed that the expression of p-ATF-2 increased with increasing MGF concentration.Conclusions Our study shows that MGF pretreatment of OA-LFs can respond quickly to mechanical damage and accelerate the ligament injury repair by promoting cell migration,decreasing the MMP-2 activity,and remitting the cell deformation.Therefore,MGF has potential as a therapeutic for OA patients.展开更多
基金supported by grants from Key R&D Project of Science and Technology Foundation of Sichuan Province(2022YFS0290).
文摘Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients.
基金Supported by the National Natural Science Foundation of China,No.81070319the Beijing Natural Science Foundation of China,No.7102013the Beijing Municipal Education Commission Research Program,China,No.KM201610025004
文摘BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.
基金supported by NIH R21AR57156NIH R37 CA49152+4 种基金the Rhode Island Hospital Orthopaedic Foundationgrant from the Pediatric Orthopaedic Society of North AmericaArthritis National Research Foundationrecipient of Ryan Fellowshippilot award recipient from NIGMS1P20 GM119943
文摘Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
基金supported by the National Natural Science Foundation of China ( 11532004,31270990, 31600762)Innovation and Attracting Talents Program for College and University( “111”Project) ( B06023)
文摘Background&Objective Knee osteoarthritis(OA)is a degenerative disease,which not only induces superficial cartilage defects and full-thickness cartilage defects,but also exacerbates the microenvironment of the knee joint and affects the mechano-chemical responses of the organ.As a growth/repair factor,mechanical growth factor(MGF)has the function of preventing OA,promoting cartilage regeneration and repairing damaged ligaments.activating transcription factor 2(ATF-2),a transcription factor,has the property of binding to cytokines,which makes it involved in the transcriptional regulation of various pathways in response to cellular stress,inflammatory cytokine and growth factors.At present,little is known about the effect of MGF on human osteoarthritis ligament fibroblasts(OA-LFs),and whether the approach can promote OA-LFs timely response to the mechanical injury and initiate signaling pathway for cell survival.Therefore,the purpose of this study is to investigate whether MGF promotes mechanical response to ligament fibroblasts in osteoarthritis knee cavity via ATF-2.Methods OA-LFs were seeded onto six-cell BioFlex plates and suffered from 12%static mechanical stretch[60 cycles/minute(1 Hz)]for 12 hours to mimic mechanical force mediated ligament injury.Meanwhile,OA-LFs were treated with MGF before and during mechanical stretch.Intracellular reactive oxygen species(ROS)and GRP78 mRNA expression were investigated to detect the cellular stress response of OA-LFs.The scratch test was performed to detect the migration ability of cells,gelatin zymography was used to examine the effect of MGF on the activity of matrix metalloproteinase 2(MMP-2)in OA-LFs,and cell deformation was detected by phalloidin-FITC staining after stretching.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to screen the messenger RNA(mRNA)expression of ATF family members after OALFs treatment with MGF.Western blotting further proved that MGF is capable to activate the p-ATF-2.Results OA delays LFs response to mechanical injury,while MGF pretreatment can promote cells timely feedback the mechanically stimuli by inducing cellular stress.MGF treatment can alleviate the decline in cell migration ability caused by mechanical injury and further promote cell migration.In addition,MGF can reduce the activity of MM P-5 and alleviate the stretch-induced deformation of OA-LFs.Furthermore,the mRNA expression of ATF-2 up-regulated in a dose-dependent manner upon MGF treatment compared with control,while the expression of ATF-5 gene was down-regulated in a dose-dependent.Protein levels showed that the expression of p-ATF-2 increased with increasing MGF concentration.Conclusions Our study shows that MGF pretreatment of OA-LFs can respond quickly to mechanical damage and accelerate the ligament injury repair by promoting cell migration,decreasing the MMP-2 activity,and remitting the cell deformation.Therefore,MGF has potential as a therapeutic for OA patients.