This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ...This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.展开更多
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhiz...This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.展开更多
To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 t...To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.展开更多
Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model(DAEM)to ex-pand the knowledge on the combustion mechanisms.The results demonstrated that the kinetic par...Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model(DAEM)to ex-pand the knowledge on the combustion mechanisms.The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves.Overall,the feedstock combustion could be divided into four stages:the decomposition of hemicellulose,cellulose,lignin,and char combustion.The hydrochar combustion could in turn be divided into three stages:the combustion of cellulose,lignin,and char.The mean activation energy ranges obtained for the cellulose,lignin,and char were 273.7-292.8,315.1-334.5,and 354.4-370 kJ/mol,respectively,with the standard deviations of 2.1-23.1,9.5-27.4,and 12.1-22.9 kJ/mol,re-spectively.The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization(HTC)temperature,while the mass fraction of char gradually increased.展开更多
A complexes donor in neutron-transmutation-doped (NTD) silicon grown by floating-zone-refined in a hydrogen atmosphere [FZ(H)-Si] was studied by annealing, electrical and infrared absorption measurements. Resistivitie...A complexes donor in neutron-transmutation-doped (NTD) silicon grown by floating-zone-refined in a hydrogen atmosphere [FZ(H)-Si] was studied by annealing, electrical and infrared absorption measurements. Resistivities of the crystal subjected to annealing at 480°C are about an order of magnitude lower, as compared to the crystal in which the electrical property is restored completely. The values for the donor decomposition activation energy are 1.5±0.2 eV and 0.4±0.1 eV in the temperature ranges of 500-540°C and 580-640°C, respectively. According to the measurements of interstitial oxygen concentration in the crystal, oxygen is involved in the donor.展开更多
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t...The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.展开更多
A simplified subregular solution model was developed for describing the activities of MgCl 2 in both KCl MgCl 2 LiCl and CaCl 2 MgCl 2 NaCl systems on the assumption that the electrolytes in the solution are ...A simplified subregular solution model was developed for describing the activities of MgCl 2 in both KCl MgCl 2 LiCl and CaCl 2 MgCl 2 NaCl systems on the assumption that the electrolytes in the solution are treated as independent particles in stead of their ion forms and the interchange energy between the KCl LiCl (or CaCl 2 NaCl) pair is ignored as compared to those of the KCl MgCl 2(or CaCl 2 MgCl 2) and MgCl 2 LiCl (or MgCl 2 NaCl) pairs. The calculating results on the model agree with the observed very well.展开更多
This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new wa...This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.展开更多
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat...Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.展开更多
In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this e...In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage.展开更多
The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spe...The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.展开更多
The hot compressive deformation behaviors of ZHMn34-2-2-1 manganese brass are investigated on Thermecmastor-Z thermal simulator over wide processing domain of temperatures (923–1073 K) and strain rates (0.01–10 s...The hot compressive deformation behaviors of ZHMn34-2-2-1 manganese brass are investigated on Thermecmastor-Z thermal simulator over wide processing domain of temperatures (923–1073 K) and strain rates (0.01–10 s^–1). The true stress–strain curves exhibit a single peak stress, after which the stress monotonously decreases until a steady state stress occurs, indicating a typical dynamic recrystallization. The analysis of deviation between strain-dependent Arrhenius type constitutive and experimental data revealed that the material parameters (n, A, and Q) for the ZHMn34-2-2-1 manganese brass are not constants but varies as functions of the deformation conditions. A revised strain-independent sine hyperbolic constitutive was proposed, which considered the coupled effects of strain rate temperature and strain on material parameters. The correlation coefficient and the average absolute relative error are used to evaluate the accuracy of the established constitutive model. The quantitative results indicate that the proposed constitutive model can precisely characterize the hot deformation behavior of ZHMn34-2-2-1 manganese brass.展开更多
Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas c...Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas constant (Ea/R) have not been well studied yet. From the latest experiments it is shown that Ea/R obviously changes with the hydration degree without fixed form. In this paper, the relationship between hydration degree and Ea/R is studied and a new hydration exothermic model is proposed. With those achievements, the mass concrete temperature field with arbitrary boundary condition can be calculated more precisely.展开更多
The 4340 steel is extensively utilized in several industries including automotive and aerospace for manufac- turing a large number of structural components. Due to the importance of thermo-mechanical processing in the...The 4340 steel is extensively utilized in several industries including automotive and aerospace for manufac- turing a large number of structural components. Due to the importance of thermo-mechanical processing in the pro- duction of steels, the dynamic recrystallization (DRX) characteristics of 4340 steel were investigated. Namely, hot compression tests on 4340 steel have been performed in a temperature range of 900-- 1200 ℃ and a strain rate range of 0.01--1 s-1 and the strain of up to 0.9. The resulting flow stress curves show the occurrence of dynamic recrys- tallization. The flow stress values decrease with the increase of deformation temperature and the decrease of strain rate. The microstrueture of 4340 steel after deformation has been studied and it is suggested that the evolution of DRX grain structures can be accompanied by considerable migration of grain boundaries. The constitutive equations were developed to model the hot deformation behavior. Finally based on the classical stress-dislocation relations and the kinematics of the dynamic recrystallization; the flow stress constitutive equations for the dynamic recovery period and dynamic reerystallization period were derived for 4340 steel, respectively. The validity of the model was demon- strated by demonstrating the experimental data with the numerical results with reasonable agreement.展开更多
The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO...The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO3)3·9H2O or Co(NO3)2·6H2O or Ni(NO3)2·6H2O or Zn(NO3)2·6H2O as dopants. The influence of different doping elements on the structural properties of the as-prepared samples was investigated by X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). X-ray diffraction patterns of the prepared samples were identified as the spinel structure with space group Fd3m. The grain size increases gradually as the sintering temperature rises and corresponding activation energies for the grain growth have been estimated using Arrhenius’ empirical relation.展开更多
An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution...An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution, was developed and the parameters α and β in the equation were determined by fitting the experimental data for some binary aqueous systems of electrolytes such as CuCl 2, NiCl 2, HCl, NaCl, KCl, CaCl 2 and BaCl 2. The activities of water in such ternary and multi component systems composed of 7 binaries as HClH 2OCuCl 2, HClH 2ONiCl 2, HClH 2ONaCl, NaClH 2OKCl, NaCl H 2OCaCl 2, KClH 2OCaCl 2, NaClH 2OBaCl 2, KClH 2OCaCl 2 and NaClH 2OKClBaCl 2 were predicted by a simplified sub regular solution model developed by authors from the corresponding binary systems. The predicted results are in good agreement with the measured ones. [展开更多
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re...Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).展开更多
Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource p...Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.展开更多
In order to calculate the activity coefficients of water in aqueous solution of metal electrolytes, a simplified model predicting them in ternary or multicomponent solutions with common anions from the activity data o...In order to calculate the activity coefficients of water in aqueous solution of metal electrolytes, a simplified model predicting them in ternary or multicomponent solutions with common anions from the activity data of water of the corresponding binary systems has been developed based on an assumption that the electrolytes in the solution are treated as independent particles instead of their ion forms, and the interaction of the salt( i ) salt( j ) pair in the solution is assumed to be much weaker than that of water salt pair due to the common anions of both of salts. The model was applied to the systems such as KCl H 2O NaCl, MCl H 2O M′Cl 2 (M represents Na and K, M′ represents Ca and Ba) and KCl H 2O NaCl BaCl 2 with satisfying results. The interchange energies of the studied component pairs between water and salts have also been determined by the corresponding binary aqueous solutions.展开更多
文摘This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.
文摘This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.
基金Projects(U1637601,51405520,51327902) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2017-06) supported by State Key Laboratory of High Performance Complex Manufacturing of Central South University,China
文摘To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.
基金the National Nat-ural Science Foundation of China(Nos.52074029,51804026)the USTB-NTUT Joint Research Program(No.06310063)Chuan Wang would like to acknowledge the funding support from Vinnova(dnr:2017-01327).
文摘Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model(DAEM)to ex-pand the knowledge on the combustion mechanisms.The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves.Overall,the feedstock combustion could be divided into four stages:the decomposition of hemicellulose,cellulose,lignin,and char combustion.The hydrochar combustion could in turn be divided into three stages:the combustion of cellulose,lignin,and char.The mean activation energy ranges obtained for the cellulose,lignin,and char were 273.7-292.8,315.1-334.5,and 354.4-370 kJ/mol,respectively,with the standard deviations of 2.1-23.1,9.5-27.4,and 12.1-22.9 kJ/mol,re-spectively.The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization(HTC)temperature,while the mass fraction of char gradually increased.
文摘A complexes donor in neutron-transmutation-doped (NTD) silicon grown by floating-zone-refined in a hydrogen atmosphere [FZ(H)-Si] was studied by annealing, electrical and infrared absorption measurements. Resistivities of the crystal subjected to annealing at 480°C are about an order of magnitude lower, as compared to the crystal in which the electrical property is restored completely. The values for the donor decomposition activation energy are 1.5±0.2 eV and 0.4±0.1 eV in the temperature ranges of 500-540°C and 580-640°C, respectively. According to the measurements of interstitial oxygen concentration in the crystal, oxygen is involved in the donor.
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (NRW Return Grant)CRC/TRR247:"Heterogeneous Oxidation Catalysis in the Liquid Phase"(388390466-TRR247),the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence StrategyEXC 2033-390677874-RESOLV+1 种基金the Center for Nanointegration (CENIDE)supported by COST (European Cooperation in Science and Technology)。
文摘The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.
文摘A simplified subregular solution model was developed for describing the activities of MgCl 2 in both KCl MgCl 2 LiCl and CaCl 2 MgCl 2 NaCl systems on the assumption that the electrolytes in the solution are treated as independent particles in stead of their ion forms and the interchange energy between the KCl LiCl (or CaCl 2 NaCl) pair is ignored as compared to those of the KCl MgCl 2(or CaCl 2 MgCl 2) and MgCl 2 LiCl (or MgCl 2 NaCl) pairs. The calculating results on the model agree with the observed very well.
文摘This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.
基金financially supported by the National Natural Science Foundation of China(No.U2102212)the Shanghai Rising-Star Program(No.21QA1403200)。
文摘Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.
基金National Natural Science Foundation of Sichuan Province(Project No.:2022NSFSC1645)Key R&D Program Project of Xinjiang Province(Project No.:2023B02020)National Agricultural Science and Technology Innovation System Sichuan Characteristic Vegetable Innovation Team Project,Sichuan Innovation Team Program of CARS(Project No.:SCCXTD-2024-22)。
文摘In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage.
基金Project (51071135) supported by the National Natural Science Foundation of ChinaProject (20114301110005) supported by the Ph. D.Programs Foundation of Ministry of Education of ChinaProject (10XZX15) supported by the Science Foundation of Xiangtan University,China
文摘The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘The hot compressive deformation behaviors of ZHMn34-2-2-1 manganese brass are investigated on Thermecmastor-Z thermal simulator over wide processing domain of temperatures (923–1073 K) and strain rates (0.01–10 s^–1). The true stress–strain curves exhibit a single peak stress, after which the stress monotonously decreases until a steady state stress occurs, indicating a typical dynamic recrystallization. The analysis of deviation between strain-dependent Arrhenius type constitutive and experimental data revealed that the material parameters (n, A, and Q) for the ZHMn34-2-2-1 manganese brass are not constants but varies as functions of the deformation conditions. A revised strain-independent sine hyperbolic constitutive was proposed, which considered the coupled effects of strain rate temperature and strain on material parameters. The correlation coefficient and the average absolute relative error are used to evaluate the accuracy of the established constitutive model. The quantitative results indicate that the proposed constitutive model can precisely characterize the hot deformation behavior of ZHMn34-2-2-1 manganese brass.
基金Funded by the National Natural Science Foundation of China(Nos.51109071,51209219)Jiangsu Province Natural Science Foundation(No.BK2010517)
文摘Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas constant (Ea/R) have not been well studied yet. From the latest experiments it is shown that Ea/R obviously changes with the hydration degree without fixed form. In this paper, the relationship between hydration degree and Ea/R is studied and a new hydration exothermic model is proposed. With those achievements, the mass concrete temperature field with arbitrary boundary condition can be calculated more precisely.
文摘The 4340 steel is extensively utilized in several industries including automotive and aerospace for manufac- turing a large number of structural components. Due to the importance of thermo-mechanical processing in the pro- duction of steels, the dynamic recrystallization (DRX) characteristics of 4340 steel were investigated. Namely, hot compression tests on 4340 steel have been performed in a temperature range of 900-- 1200 ℃ and a strain rate range of 0.01--1 s-1 and the strain of up to 0.9. The resulting flow stress curves show the occurrence of dynamic recrys- tallization. The flow stress values decrease with the increase of deformation temperature and the decrease of strain rate. The microstrueture of 4340 steel after deformation has been studied and it is suggested that the evolution of DRX grain structures can be accompanied by considerable migration of grain boundaries. The constitutive equations were developed to model the hot deformation behavior. Finally based on the classical stress-dislocation relations and the kinematics of the dynamic recrystallization; the flow stress constitutive equations for the dynamic recovery period and dynamic reerystallization period were derived for 4340 steel, respectively. The validity of the model was demon- strated by demonstrating the experimental data with the numerical results with reasonable agreement.
基金This work was supported by the National Natural Science Foundation of China (60671010)Natural Science Foundation of Shandong Province (Y2006B29)
文摘The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO3)3·9H2O or Co(NO3)2·6H2O or Ni(NO3)2·6H2O or Zn(NO3)2·6H2O as dopants. The influence of different doping elements on the structural properties of the as-prepared samples was investigated by X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). X-ray diffraction patterns of the prepared samples were identified as the spinel structure with space group Fd3m. The grain size increases gradually as the sintering temperature rises and corresponding activation energies for the grain growth have been estimated using Arrhenius’ empirical relation.
文摘An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution, was developed and the parameters α and β in the equation were determined by fitting the experimental data for some binary aqueous systems of electrolytes such as CuCl 2, NiCl 2, HCl, NaCl, KCl, CaCl 2 and BaCl 2. The activities of water in such ternary and multi component systems composed of 7 binaries as HClH 2OCuCl 2, HClH 2ONiCl 2, HClH 2ONaCl, NaClH 2OKCl, NaCl H 2OCaCl 2, KClH 2OCaCl 2, NaClH 2OBaCl 2, KClH 2OCaCl 2 and NaClH 2OKClBaCl 2 were predicted by a simplified sub regular solution model developed by authors from the corresponding binary systems. The predicted results are in good agreement with the measured ones. [
基金Project(101048) supported by Fok Ying Tung Education FoundationProject(E2008000835) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).
文摘Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.
文摘In order to calculate the activity coefficients of water in aqueous solution of metal electrolytes, a simplified model predicting them in ternary or multicomponent solutions with common anions from the activity data of water of the corresponding binary systems has been developed based on an assumption that the electrolytes in the solution are treated as independent particles instead of their ion forms, and the interaction of the salt( i ) salt( j ) pair in the solution is assumed to be much weaker than that of water salt pair due to the common anions of both of salts. The model was applied to the systems such as KCl H 2O NaCl, MCl H 2O M′Cl 2 (M represents Na and K, M′ represents Ca and Ba) and KCl H 2O NaCl BaCl 2 with satisfying results. The interchange energies of the studied component pairs between water and salts have also been determined by the corresponding binary aqueous solutions.